DOpusSDK

DOpusSDK

] COLLABORATORS
TITLE :
DOpusSDK
ACTION NAME DATE SIGNATURE
WRITTEN BY May 31, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

DOpusSDK iii

Contents
1 DOpusSDK 1
1.1 Globaltableof contents e 1
1.2 Copyrights o e 2
1.3 Contactand SUppOTt e e e e e 3
1.4 Examplefiles o e 4
1.5 Headersetc 4
1.6 TypeDefs etc e e 5
1.7 #defines (a-d) e 5
1.8 #defines (e-f) L e e 6
1.9 #defines (Z-1) o v i i e e e 7
1.10 #defines (J-0) o o . e e 8
LT #defines (P-1) o o e e e e 8
112 #defines (S-W) o . o e e e e e e e e e e e e 9
1.13 Module Definition e e e e e 10
114 AppXXX_TOULINES . . . o o v v o ot e e e e e e e e e e e e e e e 18
1.15 AlocAppMessage() o v vt e e e e e e 21
1.16 AppWindowData() e e 22
1.17 ChangeApplcon() o o e e e e e 23
1.18 CheckAppMessage() v v v v v i e e e e e e e e e e e 24
1.19 FindAppWindow() o o e e e 24
1.20 Free AppMessage() . . - v v v v v v v e e e e e e e e e e e e e e e 25
1.21 GetWBArgPath() 26
1.22 ReplyAppMessage() . . . v v v v v e e e e e e e e e e e e e e e e e e e 26
1.23 SetApplconMenuState() e e e e 27
1.24 SetWBAIZ() o o 27
1.25 Arg_ROULNES o o e e e e e e e e 28
1.26 ParseArgs() o o o e e e e e e 28
127 DISposEAIgS() - . . o v v v e e e e e e e 29
1.28 BOOPSI_gadgets o e e e e e e e e e 30
1.29 dopusbuttongclass e 30

DOpusSDK iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68

dopuscheckgclass L e e 31
dopusframeclass e e e e e e e e 31
dopusiclass 32
dopuslistviewgclass e e e e e e e e 32
dopuspalettegclass L. e e e e e e 37
dopusstrgelass e e e e e e e e 38
dopusviewgelass L e 39
BuflO_Routines e e e 39
CloseBuf() e 39
ExamineBuf() e e 40
FHFromBuf() e 40
FlushBuf() e e e e 41
OpenBuf() e 42
ReadBuf() e e 42
SeekBuf() e 43
WriteBuf() e e 43
Clipboard_Routines e e 44
CloseClipBoard() e e e e e e e e e 44
OpenClipBoard() e 45
ReadClipString()« o o o e e 45
WriteCLpString() o o e e 46
DiskIO_RoUtINES e e e e e 46
OpenDisk() o e e 47
CloseDisk() o e e e e e 48
DOS_Routines o e s 48
DateFromStrings() e e e e e e e e e e e 49
DeviceFromHandler() e e e 49
DeviceFromLock() e 50
DevNameFromLock() e e e e 50
FreeDosPathList() e e e e 51
GetDosPathList() e e e e e 52
GetFileVersion() e e e e e e e 52
LaunchCLI() e e e e e e e 53
LaunchWB() e e 54
ParseDateStrings() e e e e e 55
SearchFile() e e e e e e 55
SetEnv() e e e e 56
Drag_Routines e 57
FreeDragInfo() o . e 58

DOpusSDK v

1.69 GetDraglmage() e 59
1.70 GetDragInfo() o o e e e 59
1.71 GetDragMask() o o o e e 60
1.72 HideDragImage() o o o e e e e e e e e e 60
1.73 ShowDraglmage() o e e e e 61
1.74 StampDraglmage() e e e e e e e 61
175 Edit_HoOK o o e e e e e 62
1.76 FreeEditHook() e e e 63
1.77 GetEditHOOK() o o e e e e e 63
1.78 GetSecureString() e e e e e e e e 64
1.79 GUILROULINES o o o e e e e e e e e e e e 65
1.80 ActivateStrGad() e e e e 66
1.81 AddScrollBars() e e e e 66
1.82 BOOPSIFree() o v o o e et e e e e e e e e e e e e e 67
1.83 DisposeBitMap() e e e 68
1.84 DrawBox() e e 68
1.85 DrawFieldBox() e e e e 69
1.86 FindBOOPSIGadget() ot e e e e e e e e e 69
1.87 GetPalette32() o o e e e e e e e e e 70
1.88 LoadPalette32() e e e e e e 70
1.89 NewBitMap() o o e 71
1.90 ScreenInfo() L e e e 72
1.91 FindPubScreen() e e e 72
1.92 SetBusyPointer() L e e e e e e e 73
1.93 FreeCachedDiskObject() o e e 73
1.94 GetCachedDefDiskObject() o o o e e e e e e e e 74
1.95 GetCachedDiskObject() o o o i e e e e e 74
1.96 GetCachedDiskObjectNeW() o v v it e e e e e e e e e 75
1.97 GetlconFlags() o o o i e e e 76
1.98 GetlconPosition() L e e e e e e e e 76
1.99 SetlconFlags() o o o e e 77
1.100SetIconPosition() e e e e e e e e 78
1.101CopyFilelcon() e e 78
1.102IFF_ROULINES o o o o e e e e e 79
LLI03IFFChunkID() o e e e e e e e 80
1.104IFFChunkRemain() o e e e e e e e e 80
LLI0SIFFChunkSize() o o e e e e e e e e e e e e e e e e e e 81
LI0O6IFFCIOSE() o o o o e e e e e e e e e e e e e e e e 81

L107IFFFailure() e e 82

DOpusSDK vi

1.LI0BIFFGetForm() 82
LI09TFENextChunk() o e 83
LITOIFFOpPen()« o e e e e e e e e e e e e e e e 84
LITTIFFPopChunk() o 85
1.112IFFPushChunk() 85
1.113TIFFReadChunkBytes() o v ot e e e e e e e e e e e e e e e e 86
L114IFFWriteChunkBytes() o o e e e 87
LIISIFFWriteChunk() o o e 87
1.116Image_RoULINES e e e 88
LIT7CloseImage() o v o o e e e e e e e e e e e e e 89
1.118CopyImage() o o e e e e 89
1.119FreelmageRemap() o v v v o e e e e e e e e 90
1.120FreeRemaplmage() o o e e e 90
L121GetImageArs() o v o o e e e e e e e e e e e e e e e e e e e 91
1.122GetImagePalette() L e e e e 91
1.1230penImage() o o e e e e e e e e 92
1.124RemapImage() e e e e 93
1.125RenderImage() o . e e e e e e e 94
1.126IPC_ROULINES o o o o o e s, 96
LI27IPC_Command() o o e e e e e e 96
LI28BIPC_FIndProc() o o o e e e 97
LI29IPC_Flush() 98
LI30IPC_Free() o e e 98
LI3IIPC_Launch() 99
1.132IPC_ListCommand() o e e e 100
LA33IPC_ProcStartup() ¢ o v v o e e e e e e e e e e e e e e e e e 101
LI34IPC_Reply() . - -« o o e e e 102
1.135Layout_Routines e e e e e e e e e e e 103
1.136 AddObjectList() e e e e e e e e 114
1.137AddWindowMenus() e e e e e e e e e 115
1.138BoundsCheckGadget() o o o i e e e e e e e 116
L139BuildMenuStrip() o o e e e e e e e e e 117
1.140CheckObjectAreal) o v v it e e e e e e e 118
1.141ClearWindowBusy() e e e e 118
1.142CloseConfigWindow() o o L e e e e e e 118
1.143DisableObject() e e e e 119
1.144DisplayObject() e e 120
1.145EndRefreshConfigWindow() L L e 120

1.146FindMenultem() e e e e e e e e e 121

DOpusSDK vii

1.147FreeObjectList() o e 121
1.148FreeWindowMenus() o i e e e e e 122
1.149GetGadgetValue() o o e e e e 123
LISOGetObject() o o o o 124
1.151GetObjectRect() e 124
1.152GetWindowAppPOrt() o o e e e e e e e e 125
1.153GetWindowlID() L 125
1.154GetWindowMsg() o o v e e e e e e e e e e 126
1.155LayoutResize() o o o o e e 126
1.1560penConfigWindow() o o i e e e e e e e e e e 127
LIS7ReplyWindowMsg() L e 127
1.158SetConfigWindowLimits() 0 e e e e e e 128
1.159SetGadgetChoices() o o o e e e 128
1.160SetGadgetValue() v v i e e e e e e e e e e e 129
1.161SetWindowBusy() e 130
1.162SetWindowlID() L 131
1.163StartRefreshConfigWindow() 132
1.164L1st_ROULINES o e e e e e e 132
1.I65AddSorted() e e e 133
1.166Att_ChangeNodeName() o i i e e e e e e e e e e e 134
1.167Att_FindNode() 134
1.168Att_FindNodeData() e e e e 135
1.169Att_FindNodeNumber() e e e e e e e e e 135
LITOAtt _NewList() 136
LITTAt . NewNode() o o o e e e e e e e e e 137
1.172Att_NodeCount() o o e e e 138
1.173Att_NodeDataNumber() e e e e e e e e e e 138
1.174Att_NodeName() o e e e e e e e e e 139
1.175Att_NodeNumber() L e e e e e 140
LI76Att_PosNode() o e e e e e e 140
LI77At RemList() o o e e e 141
1.178Att_RemNode() e e e e e e e 142
1.179FindNamel() 142
1.180GetSemaphore() o o i e e e e e e e e 143
LI81InitListLock() o e e e 143
1.182IsListLockEmpty() o o o e e e e 144
LAIB3LOCKALLASI)) . . . o o o e e e e e e 144
1.184SwapListNodes() o o e e e e e 145

1.185UnlockAttLASt() o e e e 145

DOpusSDK viii

1.186Locale_RoOULINES 146
LA8TDOPUSGELSIring()« o o v o e e e e e e e e e e e e e e 146
1.188Memory_Routines e e e 147
1.189AIocMemH() e e e e e 147
1.190ClearMemHandle() e e e e 148
1.191FreeMemH() e e e e 149
1.192FreeMemHandle() L. e e e e e 149
1.193NewMemHandle() L e e e e 150
1.194Misc_RoOUtINES e e e e 151
LIOSALOh() . . . o o e e e 152
LI96BtOCStr() . . . o o o e e e e e e e e e 152
L.197BuildKeyString() o e e e 152
1.198BytesToString() o o v i e e e 153
1.199ConvertRawKey() o e e e e e e e e 154
1.200DivideToString() o o o e e e e e 154
L.201DivideU() o o e e e e e e e e e 155
1.202Tt0a0) . . . o e e e e e e e 155
1.203Tt0alU() o o o e e e e e e 156
1.204QualValid() e e e e 156
1.205Random() e e 157
1.206StrCombine() e 157
1.207StrConcat() e e e e e e e e e e e e e e 158
1.208Seed() o e e e e 158
1.209Notify_Routines e e e e e 159
1.210AddNotifyRequest() 159
1.211RemoveNotifyRequest() o e e e e e e 161
1.212ReplyFreeMsg() o o e e 162
1.213SetNotifyRequest() o o e e e e e e e e e e 162
1.214Popup_Routines L L e e e e 163
1.215DoPopUpMenu() o v v i e e e e e e e e e e e e e e e e 163
1.216GetPopUpltem() L e e 165
1.217Progress_ROULINES o e e e e e e e e 166
1.218CheckProgressAbort() o e e e e e e e 166
1.219CloseProgressWindow()o e e e e 167
1.220GetProgressWindow() oL e e e e e e e 167
1.221HideProgressWindow() oL e e e 168
1.2220penProgressWindow() L e 168
1.223SetProgressWindow() e e e 170

1.224ShowProgressWindow() L . L e e e 171

DOpusSDK ix

1.225Requester_Routines e e 171
1.226 AsyncRequest() o oo e e e e 172
1.2270penStatusWindow() L. e e e e e e e e 174
1.228SelectionlList() L e e e e e e e e e e e e e 175
1.229SetStatusText() o e e e e e e e e e e e e e 176
1.230Timer_Routines e e e 176
1.231AHocTimer() o e e e e e e e 177
1.232CheckTimer() o o e 177
1.233FreeTimer() o e e e e e e 178
1.234GetTimerBase() e e e e 178
1.235StartTimer() o o e e e e e e e 179
1.236StopTimer() e e 180
1.237TimerActive() o e e e e e e e e e e e 180

L.238Index 181

DOpusSDK 1/190

Chapter 1

DOpusSDK

1.1 Global table of contents

Directory Opus 5.5
Software Development Kit 1.0
(c) 1996 Jonathan Potter & GPSoftware 1996

The Opus SDK kit allows you to access the functions in the dopus5.library,
and create your own modules, applications or other programs that use the

power of Directory Opus.

The contents of the SDK is as follows

docs - Documentation for the dopusb5.library
AGDocs - Documentation in AmigaGuide format for the dopus5.library
include - Include files

lib - Linker files

example
— Example source code including:-
source - Source to the modinit.o module

The include and linker files are all designed for use with a C compiler
(the example source code is set up to compile under SAS/C).

dopus5.library AutoDocs Index

Writing an Opus 5.5 Module

Header files - structures

Header files - typedefs and defines

The dopus5.library contains many useful functions. For convenience <=

, they
have been grouped into meaningful areas:

AppIcon/AppWindow support

DOpusSDK

2/190

BOOPSI Gadgets

Buffered I/0

Clipboard string handling
Custom string Edit Hook
Disk I/O

DOS support

Drag and Drop routines
GUI layout routines

GUI support

IFF reading/writing

Image handling

Inter-Process Communication

List management

Locale (language) support
Memory handling/pooling
Miscellaneous

Opus Notification

Popup Menus

Progress Indicator
Requesters

String argument parsing
Timer handling
Please read the following
Copyrights

Contact Details

1.2 Copyrights

Copyrights and Notices

DOpusSDK 3/190

Directory Opus 5 is (c) Jonathan Potter and GPSoftware 1995-1996.

This collection of developer materials is (c) GPSoftware but may be
distributed free of charge to owners of Opus 5 to assist in the

development of supporting modules and programs to be run with Dopus 5.5
providing this archive is distributed in its entirety. No part of this
archive may be reproduced separately in any form whatsoever without written
permission from GPSoftware.

Although we have taken all care in assembling these development resources,
the information is provided ’"as is’ without any guarantee or warranty as to

the performance etc etc. Neither GPSoftware, Jonathan Potter nor Dr Greg
Perry accept liability for the accuracy or the use of these materials.

Dr Greg Perry, GPSoftware, September 9th 1996
PO Box 570, Ashgrove, Qld Australia 4060 Ph/fax +61 7 33661402
Internet Email: zzgperry@mailbox.uqg.oz.au

WWW : http://www.livewire.com.au/gpsoft/

1.3 Contact and Support

Contact and Support
As well as the WWW pages located at
http://www.livewire.com.au/gpsoft/
we maintain a number of mailing lists for Directory Opus users. These
are designed to provide general comment and limited support for
registered users of Opus 5.5.
A) General Mailing list: dopusb
This is a mailing list for general discussion relating to
general use and comments for Opus 5. To subscribe to this
list, send mail to listserv@lss.com.au with
subscribe dopus5 <Your Name>
in the message body. You will be automatically sent a brief
welcome message, with instructions on how to post to the list.

B) Developer Mailing list: dopusb-dev

There is a mailing list for the discussion of programming issues
relating to Opus and the Opus SDK. To subscribe to this list,
send mail to listserv@lss.com.au with

subscribe dopus5-dev <Your Name>

in the message body. You will be automatically sent a brief welcome

DOpusSDK 4/190

message, with instructions on how to post to the list.

1.4 Example files

The ’'example’ directory contains the following example source code:-
module
A basic module that adds one command to Opus
and opens a requester. Shows a simple example of
creating an Opus module.
envoymodule
A module that lets you set network
information for files with Envoy. Shows an example of
a simple user interface, using the Opus callback function
and using a progress indicator.
iconclock
The source to the icon clock module. Shows
how to write a module that is called on startup and remains
resident. Also has an example of the new AppIcon
features of Opus.
viewfont
The source to the ViewFont program. Shows how to

create a more complex, resizeable user interface, and
how to access menus.

1.5 Headers etc

Opus 5.5 Header files

dopus/appicon.h dopus/args.h dopus/bufferedio.h
dopus/clipboard.h dopus/diskio.h dopus/dopusbase.h
dopus/dos.h dopus/drag.h dopus/edithook.h
dopus/gui.h dopus/icon.h dopus/iff.h
dopus/images.h dopus/ipc.h dopus/layout.h
dopus/lists.h dopus/locale.h dopus/memory.h
dopus/misc.h dopus/modules.h dopus/notify.h
dopus/popup.h dopus/progress.h dopus/requesters.h
dopus/timer.h pragmas/dopus_pragmas.h

Opus 5.5 Structs/unions

_Att_List _Att_Node _DOpusAppMessage
_DragInfo _GL_Object _IPC
_ObjectList addfile_packet AppSnapshotMsg

command_packet delfile_packet DOpusLocale

DOpusSDK 5/190

DOpusScreenData endentry_packet function_entry
gpResize ListLock loadfile_packet
path_node replacereq_packet TimerHandle

1.6 TypeDefs etc

Att_List
DiskHandle
DragInfo
GL_Object
IPCMessage
ModuleFunction
ObjectDef
PopUpItem
WindowData

Opus 5.5 Typedefs

Att_Node ConfigWindow
DOpusAppMessage DOpusNotify
DragInfoExtra FuncArgs
ImageRemap IPCData
ListViewDraw MenuData
ModuleInfo NewConfigWindow
ObjectList OpenImageInfo
PopUpMenu TimerHandle
WindowID
Opus 5.5 #defines

a—-d

e—f

g-i

j-o

p-r

S—Ww

1.7 #defines (a-d)

ADDNODEF_EXCLUSIVE

ADDNODEF_PRI
APPSNAPF_CLOSE
APPSNAPFEF_INFO

Opus 5.5 #defines

(a-d)

ADDNODEF_NUMSORT

APPSNAPF_UNSNAPSHOT

AR_Buffer
AR_Button
AR_CheckMark
AR_Flags
AR_Message
AR_Screen
AR_Window
AREAFLAG_ERASE
AREAFLAG_LINE

ADDNODEF_SORT
APPSNAPF_HELP
APPSNAPF_MENU

APPSNAPF_WINDOW_POS

AR_BuflLen
AR_ButtonCode
AR_CheckPtr
AR_History
AR_Requester
AR_Title

AREA ()
AREAFLAG_TICON
AREAFLAG_NOFILL

DOpusSDK

AREAFLAG_OPTIM
AREAFLAG_RECESSED
AREAFLAG_TITLE
BUTTONFLAG_OKAY_BUTTON
BUTTONFLAG_TOGGLE_SELECT
CAIF_LOCKED
CAIF_SELECT
CAIF_TITLE
CFGDATA ()
DAE_Background
DAE_Info
DAE_Locked
DAE_MenuBase
DAE_ToggleMenu
DAPPF_TICON_DROP
DFB_DefPath
DIA_Type
DIR_GLASS_KIND
DLV_DoubleClick
DLV_DrawLine
DLV_GetLine
DLV_Labels
DLV_MakeVisible
DLV_NoScroller
DLV_ReadOnly
DLV_ScrollDown
DLV_ScrollWidth
DLV_SelectNext
DLV_ShowChecks
DLV_ShowSelected
DLV_Top
DN_APP_TICON_LIST
DN_CLOSE_WORKBENCH
DN_DOS_ACTION
DN_OPUS_HIDE
DN_OPUS_SHOW
DN_RESET_WORKBENCH
DN_WRITE_ICON
DNF_DOS_CREATE
DNF_DOS_DELETEFILE
DNF_DOS_RENAME
DNF_DOS_SETFILEDATE
DNF_TICON_CHANGED
DPG_Pen
DPG_SelectPrevious
DRAGF_NO_LOCK
DRAGF_TRANSPARENT
DRAWINEFO ()

1.8 #defines (e-f)

AREAFLAG_RAISED
AREAFLAG_THIN
BUTTONFLAG_CANCEL_BUTTON
BUTTONFLAG_THIN_BORDERS
CATIF_BUSY
CATF_RENDER
CATIF_SET
CATIF_UNBUSY
COMMANDF_RESULT
DAE_Close
DAE_Local

DAE_Menu
DAE_SnapShot
DAE_ToggleMenuSel
DATA ()
DIA_FrontPen
DIR_BUTTON_KIND
DLV_Check
DLV_DragNotify
DLV_Flags
DLV_Highlight
DLV_Lines
DLV_MultiSelect
DLV_Obiject
DLV_RightJustify
DLV_ScrollUp
DLV_Selected
DLV_SelectPrevious
DLV_ShowFilenames
DLV_TextAttr
DLV_TopJdustify
DN_APP_MENU_LIST
DN_DISKCHANGE
DN_OPEN_WORKBENCH
DN_OPUS_QUIT
DN_OPUS_START
DN_REXX_UP
DNF_DOS_CLOSE
DNF_DOS_CREATEDIR
DNF_DOS_RELABEL
DNF_DOS_SETCOMMENT
DNF_DOS_SETPROTECTION
DNF_ICON_REMOVED
DPG_SelectNext
DRAGF_DONE_GELS
DRAGF_OPAQUE
DRAGF_VALID

Opus 5.5 #defines (e-f)

EDITF_NO_SELECT_NEXT
EDITF_SECURE

EDITF_PATH_FILTER
EH_ChangeSigBit

DOpusSDK

7/190

EH_ChangeSigTask
EXT_FUNC ()
EXTCMD_CHECK_ABORT
EXTCMD_DO_CHANGES
EXTCMD_END_ENTRY
EXTCMD_ENTRY_COUNT
EXTCMD_GET_DEST
EXTCMD_GET_HELP
EXTCMD_GET_SCREEN
EXTCMD_GET_SOURCE
EXTCMD_LOAD_FILE
EXTCMD_RELOAD_ENTRY
EXTCMD_REPLACE_REQ
EXTCMD_UNLOCK__SOURCE
FILE_BUTTON_KIND
FILEBUTFLAG_SAVE
FPOS_TEXT_OFFSET
FUNCFEF_CAN_DO_ICONS
FUNCF_NEED_DIRS
FUNCF_NEED_FILES
FUNCFEF_PRIVATE
FUNCF_SINGLE_SOURCE
FUNCEF_WANT_ENTRIES
FUNCID_STARTUP

1.9 #defines (g-i)

GAD_ID_ICONIFY
GADGET_NUMBER ()
GADGET_SPECIAL()
GADNUMBER ()
GADSPECIAL ()
GM_RESIZE
GTCustom_Borderless
GTCustom_ChangeSigBit
GTCustom_Control
GTCustom_FontPenCount
GTCustom_FontPenTable
GTCustom_History
GTCustom_Integer
GTCustom_LayoutPos
GTCustom_LocaleKey
GTCustom_MinMax
GTCustom_NoSelectNext
GTCustom_Secure
GTCustom_TextAttr
GTCustom_ThinBorders
HOTKEY_KIND
ICONF_NO_LABEL
ID_AFS_MULTI
ID_AFS_USER
ID_PFS_HARD

IFF_CLIP

EH_History
EXTCMD_ADD_FILE
EXTCMD_DEL_FILE
EXTCMD_END_DEST
EXTCMD_END_SOURCE

EXTCMD_FREE_SCREENDATA

EXTCMD_GET_ENTRY
EXTCMD_GET_PORT

EXTCMD_GET_SCREENDATA

EXTCMD_GET_WINDOW
EXTCMD_NEXT__SOURCE
EXTCMD_REMOVE_ENTRY
EXTCMD_SEND_COMMAND
FIELD_KIND
FILE_GLASS_KIND
FONT_BUTTON_KIND
FRAME_KIND
FUNCF_NEED_DEST
FUNCF_NEED_ENTRIES
FUNCF_NEED_SOURCE
FUNCF_SINGLE_DEST
FUNCF_WANT_DEST
FUNCEF_WANT_SOURCE

Opus 5.5 #defines

GADGET ()
GADGET_SEL ()
GADGET_STRING ()
GADSEL ()
GADSTRING ()
GTCustom_Bold
GTCustom_CallBack

(g-1)

GTCustom_ChangeSigTask

GTCustom_CopyTags
GTCustom_FontPens
GTCustom_FrameFlags
GTCustom__Image
GTCustom_Justify
GTCustom_LayoutRel

GTCustom_Localelabels

GTCustom_NoGhost
GTCustom_PathFilter
GTCustom_Style

GTCustom_TextPlacement

HOOKTYPE_ STANDARD
ICONF_NO_BORDER
ICONF_POSITION_OK
ID_AFS_PRO
ID_PFS_FLOPPY
IDCMP_FUNC ()
IFF_CLIP_READ

8/190

DOpusSDK

IFF_CLIP_WRITE IFF_READ

IFF_SAFE IFF_WRITE
IM_ARROW_DOWN IM_ARROW_UP
IM_BBOX IM_BORDER_BOX
IM_CHECK IM_ClipBoundary
IM_CROSS IM Depth

IM_DRAWER IM_FErase

IM_Height IM_ICONIFY

IM_LOCK IM_Mask
IM_NoDrawInvalid IM_NoIconRemap
IM_Rectangle IM_State

IM_Width IPCDATA(()
IPCF_GETPATH IPCM_STACK()
IPCSIG_HIDE IPCSIG_QUIT
IPCSIG_SHOW IRF_PRECISION_EXACT
IRF_PRECISION_GUI IRF_PRECISION_ICON
IRF_REMAP_COLO IS_GADTOOLS ()

1.10 #defines (j-0)

JUSTIFY_ CENTER
JUSTIFY_RIGHT
LAYOUTF_LEFT_ALIGN
LAYOUTF_SAME_HEIGHT
LAYOUTF_TOP_ALIGN
LISTF_LOCK
LISTVIEWFLAG_CURSOR_KEYS
lve_Pen

LVEF_TEMP
MENUFLAG_AUTO_MUTEX
MENUFLAG_GET_SEQ ()
MENUFLAG_TEXT_STRING
MENUID ()
MODULEF_STARTUP_SYNC
NM_BAR_LABEL
NT_DOPUS_NOTIFY
OBJECTF_INTEGER
OBJECTF_PATH_FILTER
OBJECTF_SECURE
OBJLIST ()

OD_END

OD_IMAGE

OD_TEXT
OPEN_SHRUNK_HORIZ
OPEN_USED_DEFAULT
OPUS_LISTVIEW_KIND

1.11 #defines (p-r)

Opus 5.5 #defines (j-o0)

JUSTIFY_LEFT
LAYOUTF_BOTTOM_ALIGN
LAYOUTF_RIGHT_ALIGN
LAYOUTF_SAME_WIDTH
LFF_TICON

LISTF_POOL

lve_Flags
LVEF_SELECTED
LVEF_USE_PEN
MENUFLAG_COMM_SEQ
MENUFLAG_MAKE_SEQ ()
MENUFLAG_USE_SEQ
MODULEF_CALL_STARTUP
MTYPE_APPSNAPSHOT
NM_NEXT
OBJECTF_HOTKEY
OBJECTF_NO_SELECT_NEXT
OBJECTF_READ_ONLY
OBJECTFLAG_DRAWN
OD_AREA

OD_GADGET

OD_SKIP

OPEN__SHRUNK
OPEN_SHRUNK_VERT
OPEN_USED_TOPAZ

DOpusSDK

POPUP_BARLABEL
POPUPF_CHECKED
POPUPF_DISABLED
POPUPF_SUB
POPUPMF_HELP
POS_CENTER
POS_MOUSE_REL
POS_REL_RIGHT
POS_SQUARE
POSFLAG_ADJUST_POS_Y
POSFLAG_ALIGN_POS_Y
PW_FileDone
PW_FileNum
PW_Flags
PW_Screen
PW_SigTask
PW_Window
PWF_FILENAME
PWF_GRAPH
PWF_INVISIBLE
PWF_SWAP
RANGE_BETWEEN
RECTHEIGHT ()
REF_CALLBACK ()
REMLISTF_SAVELIST
REPLACE_LEAVE
REPLACEF_ALL
REPLY_NO_PORT_IPC

1.12 #defines (s-w)

SCRI_LORES
SCROLL_NOIDCMP
SEARCH_NOCASE
SEARCH_WILDCARD
SEMF_EXCLUSIVE
SET_IPCDATA ()
SIZE_MAX_LESS
SLF_DIR_FIELD
SRF_CHECKMARK
SRF_LONGINT
SRF_PATH_FILTER
SRF_SECURE
TEXTFLAG_CENTER
TEXTFLAG_RIGHT_JUSTIFY
TYPE_EXT ()
WINDOW_AUTO_KEYS
WINDOW_BACKDROP
WINDOW_FUNCTION
WINDOW_ICONIFY

Opus 5.5 #defines

POPUP_HELPFLAG
POPUPF_CHECKIT
POPUPF_LOCALE
POPUPMF__ABOVE
POPUPMF_REFRESH
POS_MOUSE_CENTER
POS_PROPORTION
POS_RIGHT_JUSTIFY
POSFLAG_ADJUST_POS_X
POSFLAG_ALIGN_POS_X
PW_FileCount
PW_FileName
PW_FileSize
PW_Info

PW_SigBit
PW_Title
PWE_ABORT
PWF_FILESIZE
PWE_INFO
PWE_NOABORT
RANGE_AFTER
RANGE_WEIRD
RECTWIDTH ()
REMLISTF_FREEDATA
REPLACE_ABORT
REPLACE_REPLACE
REPLY_NO_PORT

Opus 5.5 #defines

SCROLL_HORIZ
SCROLL_VERT
SEARCH_ONLYWORDS
SEMF_ATTEMPT
SEMF__SHARED
SET_WINDOW_ID ()
SIZE_MAXIMUM
SREF_CENTJUST
SREF_HISTORY
SRF_MOUSE_POS
SREF_RIGHTJUST
TEXTFLAG_ADJUST_TEXT
TEXTFLAG_NO_USCORE
TEXTFLAG_TEXT_STRING
VISINEO ()
WINDOW_AUTO_REFRESH
WINDOW_BUTTONS
WINDOW_GROUP
WINDOW_LAYOUT_ADJUST

(p—r)

(s—w)

DOpusSDK

10/190

WINDOW_LISTER
WINDOW_MAGIC
WINDOW_NO_BORDER
WINDOW_OBJECT_PARENT
WINDOW_REQ FILL
WINDOW_SIMPLE
WINDOW_SIZE_RIGHT
WINDOW_TEXT_VIEWER
WINDOW_UNKNOWN
WINDOW_VISITOR
WINMEMORY ()

WINDOW_LISTER_TICONS
WINDOW_NO_ACTIVATE
WINDOW_NO_CLOSE
WINDOW_POPUP_MENU
WINDOW_SCREEN_PARENT
WINDOW_SIZE_BOTTOM
WINDOW_START
WINDOW_UNDEFINED
WINDOW_USER
WINFLAG ()
WINREQUESTER ()

1.13 Module_ Definition

External_ Module_Definition

PURPOSE

1. Introduction

Directory Opus 5 supports two types of "external modules".
an AmigaDos library file.
are described in the main Opus 5 documentation.

describes the main type,

modules,

Library-based modules are located in the DOpus5:Modules/ directory,
are identified by the ".module"
with two compulsory entry points.

libraries,

entry points you want,

suffix.

but the first two

This document

The other type, ARexx

and

They are standard AmigaDos

They main contain any other
are required to work with Opus.

The example code supplied with the SDK illustrates how to create an Opus

module.

While the supplied code is

adapt it to any other C compiler.

2. Main module entry point

designed for SAS/C,

it would be easy to

The main entry point to the module is a function called Module_Entry() .

args

The prototype for this function is as follows:
long Module_Entry(register __ a0 char
register __al struct Screen =*screen,
register __a2 IPCData xipc,
register __a3 IPCData #*mainipc,
ULONG mod_id,
EXT_FUNC (callback))

*args,

register do

register __dl

This function must be at offset -0xle in the library,

in the specified registers.

and take parameters

it is called by Opus when
The parameters to the

You should never call this function yourself;
the user runs one of the commands in your module.
Module_Entry () function are as follows:

- null-terminated argument string, contains any arguments the

user supplied for the command

DOpusSDK 11/190

screen - main Opus screen pointer, you should open any requesters
on this screen

ipc - a pointer to your IPCData structure - Opus launches each
module command as a new process

mainipc - a pointer to the main IPCData structure for Opus
mod_id — the ID code of the command selected by the user
callback - address of Opus callback function (see below)

3. Second module entry point

The second entry point is a function that the module uses to identify
itself. When Opus starts up it scans the contents of the modules
directory, and calls this function in each of the modules.

The standard modinit.o module startup code supplies this function for
you. It is not recommended that you change it. If you need to supply
your own function, the prototype is as follows

APTR Module_TIdentify(register __dO long num);

This function must be at offset -0x24 in the library. "num" is the
command ID number that Opus is enquiring about. If "num" is equal to -1,
you must return a pointer to the ModuleInfo structure for the module. If
"num" is equal to a valid command ID code, you must return a pointer to
a description string for that command. If "num" is an invalid value,

you must return O.

4. Module identification

The contents of the module are identified with a ModuleInfo structure.
All fields of the ModuleInfo structure must be initialised. The meaning
of the fields is as follows:

ver — Module version number (for your own use)
name - pointer to module name, including ".module" suffix
locale_name - name of locale catalog for the module. This is opened
automatically by the standard modinit.o startup code,
which you should use.

flags - Module flags, see below
function_count - The number of functions in this module
function - The definition of the first function

Module flag values (for the "flags" field) are as follows:

MODULEF_CALL_STARTUP - If this flag is specified, Opus will run
your module automatically on startup, with
the special "mod_id" value of FUNCID_STARTUP

MODULEF_STARTUP_SYNC - If MODULEF_CALL_STARTUP is also specified,
this flag causes Opus to wait for your

DOpusSDK 12/190

module to return from the startup call before
continuing

The ModuleInfo structure contains room for only one function definition.
If your module contains more than one function, the additional
ModuleFunction structures MUST follow the ModuleInfo structure in memory.
You must provide as many ModuleFunction structures are were specified

in the "function_count" field of the ModuleInfo structure. For example,

// Module definition, includes first function

ModuleInfo
module_info={
1, // Version
"example.module", // Module name
"example.catalog", // Catalog name
0, // Flags
2, // Number of functions

{0, "Examplel",MSG_EXAMPLE1l_DESC,0,0}};

// Second function definition follows immediately on
ModuleFunction
module_func_2={
1, "Example2",MSG_EXAMPLE2_DESC,0,0};

5. Function definitions

The ModuleFunction structure is used to define each command that the
module provides. The first function is defined with a ModuleFunction
structure embedded in the ModuleInfo; additional commands must be
defined after that. All fields of the ModuleFunction structure must
be initialised, as follows:

id - command ID code. This value is passed as the "mod_id"
parameter to the Module_Entry () function
name - name of the function. This is the actual command name

that will be used to invoke this command

desc — locale string ID for the function description. This is the
ID of the string in the catalog for this module that is
used to describe this command in the popup command list.

flags - command flags, see below

template - command template (in ReadArgs() format). This string is
displayed in the popup argument list in Opus function
editors, but is not actually parsed by Opus. You will
need to use the

ParseArgs ()
routine on the "args"
parameter in the Module_Entry () function.

ModuleFunction flags are as follows:

FUNCF_NEED_SOURCE - set if your module requires a valid source

DOpusSDK 13/190

directory - if one is not available, your
command will not be launched

FUNCF_NEED_DEST - set if your module requires a valid destination
directory

FUNCF_NEED_FILES - set i1if you need there to be selected files

FUNCF_NEED_DIRS - set if you need selected directories

FUNCF_CAN_DO_ICONS - set if you can operate on icons as well as

normal files/directories

FUNCF_SINGLE_SOURCE - set if you can only operate on a single source
lister
FUNCF_SINGLE_DEST — set if you can only operate on a single

destination lister

FUNCF_WANT_DEST - set if you want a destination directory, but
don’t require one

FUNCF_WANT_SOURCE - set if you want a source directory, but don’t
require one

FUNCF_WANT_ENTRIES - set in conjunction with FUNCF_NEED_FILES or
FUNCF_NEED_DIRS, to specify that you want those
items but don’t require them

FUNCF_PRIVATE - the function is private, it won’t show up in
the popup command list

6. Standard startup code

It is highly recommended that you link with the standard module
startup code (modinit.o) when creating modules. This code contains the
Module_TIdentify () function, and automatically initialises several
library bases which you may need. See the <dopus/modules.h> file for
more information on this file.

7. Module callback function

The "callback" parameter to the Module_Entry () function provides the

address of a callback function within Opus. This function allows you

to access information that your module command may need. The callback
function is defined as follows:

ULONG callback (register __dO0 ULONG command,

register __a0 APTR handle,

register __al APTR packet) ;
command - the callback command, see below for the list
handle - the callback handle. You must pass the value of

IPCDATA (ipc) for this parameter ("ipc" is the argument

DOpusSDK 14/190

passed to the Module_Entry () function)
packet - a command-specific packet
Following is the 1list of callback commands. Each command takes a packet

specific to it.

Command : EXTCMD_GET_SOURCE
Purpose : Returns the current source path

Packet : char path[256]
Returns : struct path_node xpath
Notes : The packet is a pointer to a 256 character buffer, into

which the current source path will be copied. The return
value is a pointer to a path_node structure, which can be
used with other callback commands. This structure is

READ ONLY!

Command : EXTCMD_END_SOURCE
Purpose : Finishes and cleans up current source path

Packet : Set to O
Returns : <none>
Notes : Call this command if you are aborting early and do not

wish to process further source paths.

Command : EXTCMD_NEXT_SOURCE

Purpose : Gets the next source path

Packet : char path[256]

Returns : struct path_node xpath

Notes : Call this command when you have finished with the first

source path and want to move onto the next one. The
return value is NULL if there are no more source paths.

Command : EXTCMD_UNLOCK_SOURCE

Purpose : Unlock source listers

Packet : <none>

Returns : <none>

Notes : When your module command is called, any source listers

are locked automatically. Call this command when you want
to unlock them (they are unlocked automatically when
your module returns).

Command : EXTCMD_GET_DEST

Purpose : Returns the next destination path

Packet : char path[256]

Returns : struct path_node =xpath

Notes : The packet is a pointer to a 256 character buffer, into

Wthh the current destination path will be copied. The
return value is a handle to the path, which can be used with
other callback commands. Call this command repeatedly to
move through the destination paths. When all the destination
paths have been used, this command will return NULL. If you
call this command again, it will will start again with the
first destination path.

Command : EXTCMD_END_DEST
Purpose : Ends the current destination path

DOpusSDK 15/190

Packet : FALSE to abort, TRUE to continue
Returns : <none>
Notes : You must call this command when you have finished with one

destination path, prior to calling EXTCMD_GET_DEST.

Command : EXTCMD_GET_ENTRY

Purpose : Get the next entry to work with
Packet : <none>
Returns : struct function_entry {
struct MinNode node; // Node
char *name; // File name
APTR entry; // Not used
short type; // Type; <0 = file, >0 = dir
short flags; // Not used
}i
Notes : This returns a pointer to the next entry in the current

source path. This structure is READ ONLY! Use the "name"
field to get the entry name.

Command : EXTCMD_END_ENTRY
Purpose : Finish with specific entry
Packet : struct endentry_packet {
struct function_entry *entry; // Entry to end
BOOL deselect; // TRUE for deselect
}i
Returns : <none>
Notes : Call this command when you have finished working with one
entry and wish to move on to the next. "entry" must be set
to the pointer that was returned by EXTCMD_GET_ENTRY.
Set "deselect" to TRUE to have the entry deselected in the
lister.

Command : EXTCMD_RELOAD_ENTRY

Purpose : Marks an entry to be reloaded

Packet : struct function_entry *entry;

Returns : <none>

Notes : This command marks the specified entry to be reloaded.

When the function finishes, the entry will be reloaded to
update any changes that your module might have made to
it.

Command : EXTCMD_REMOVE_ENTRY
Purpose : Marks an entry to be reloaded

Packet : struct function_entry xentry;
Returns : <none>
Notes : This command marks the specified entry to be removed.

When the function finishes, the entry will be removed
from the lister it is in.

Command : EXTCMD_ENTRY_COUNT

Purpose : Returns total count of entries

Packet : <none>

Returns : long entry_count;

Notes : Returns the number of selected entries for the function.

Command : EXTCMD_ADD_FILE
Purpose : Adds a file to a lister

DOpusSDK 16/190

Packet : struct addfile_packet {
char *path; // Path to add file to
struct FileInfoBlock =*fib; // FileInfoBlock to add
APTR lister; // Lister pointer
i
Returns : <none>
Notes : Allows you to add a file or directory to a lister. The path

field points to the full path of the file to add. fib is an
initialised FileInfoBlock which is used to create the file
entry. The lister pointer is found in the path_node
structure, which is obtained via a call to EXTCMD_GET_SOURCE
or EXTCMD_GET_DEST. The display is not updated until you
call EXTCMD_DO_CHANGES, or your function returns.

Command : EXTCMD_DEL_FILE
Purpose : Delete a file from a lister

Packet : struct delfile_packet {
char *path; // Path file is in
char *name; // Filename to delete
APTR lister; // Lister pointer
i
Returns : <none>
Notes : This removes the specified file from any listers it is

current shown in. The file itself is not deleted, only the
display of it in the lister. The display is not updated
until you call EXTCMD_DO_CHANGES, or your function returns.

Command : EXTCMD_LOAD_FILE

Purpose : Load a new file in a lister
Packet : struct loadfile_packet {
char *path; // Path file is in
char xname; // Name of file
short flags; // Flags
short reload; // Reload existing file
}i
Returns : <none>
Notes : This command is similar to EXTCMD_ADD_FILE except that it

Examines () the file and supplies the FileInfoBlock
automatically. ’"path’ is the full path of the file and
"name’ is the file name. The only valid flag at this time
is LFF_ICON, which indicates that the icon (.info) of the
supplied file is to be loaded instead of the file itself.
If 'reload’ is set to TRUE, an existing file will be
reloaded (ie the old entry in the lister will be removed).

Command : EXTCMD_DO_CHANGES
Purpose : Perform file changes in listers

Packet : <none>
Returns : <none>
Notes : This command causes any changes made to listers by the

EXTCMD_ADD_FILE, EXTCMD_DEL_FILE and EXTCMD_LOAD_FILE
commands to be displayed. If your function returns without
calling this command, the changes are displayed
automatically.

Command : EXTCMD_CHECK_ABORT
Purpose : Check abort status in lister

DOpusSDK 17/190

Packet : <undefined>
Returns : BOOL
Notes : This command returns TRUE if your ’function’ has been

aborted by the user. This could have occurred because the
user pressed escape or clicked the close button on a lister,
or quit the program.

Command : EXTCMD_GET_WINDOW

Purpose : Get a lister’s window pointer

Packet : struct path_node xpath

Returns : struct Window xwindow

Notes : Returns a pointer to the Window for the lister specified by

the path_node structure. This is useful if you want to open
a requester over a lister window.

Command : EXTCMD_GET_HELP

Purpose : Get help on a topic

Packet : char xtopic

Returns : <none>

Notes : This command causes Opus to open the AmigaGuide help file and

search for the named topic.

Command : EXTCMD_GET_PORT

Purpose : Get ARexx port name

Packet : char name[40]

Returns : <none>

Notes : This command copies the name of the Opus ARexx port into the

supplled buffer.

Command : EXTCMD_GET_SCREEN

Purpose : Get public screen name

Packet : char name[40]

Returns : <none>

Notes : This command copies the name of the Opus public screen into

the supplled buffer.

Command : EXTCMD_REPLACE_REQ
Purpose : Shows a "file exists - replace?" requester
Packet : struct replacereq packet {
struct Window *window; // Window to open over
struct Screen xscreen; // Screen to open on
IPCData *ipc; // Process IPC pointer
struct FileInfoBlock *filel; // First file information
struct FileInfoBlock =*xfile2; // Second file information
short flags; // Set to 0 for now
}i
Returns : Result of requester; REPLACE_ABORT for abort,
REPLACE_LEAVE for skip or REPLACE_REPLACE for replace.
If the REPLACEF_ALL flag is set, it indicates an "All"
gadget (eg Skip All, Replace All)

Command : EXTCMD_GET_SCREENDATA

Purpose : Get information about the Opus display
Packet : <none>
Returns : struct DOpusScreenData {
sStruct Screen *screen; // Pointer to Opus screen

struct DrawInfo xdraw_info; // DrawInfo structure

DOpusSDK 18/190
USHORT depth; // Depth of screen
USHORT pen_alloc; // Pen allocation flag
USHORT pen_arrayl[l6]; // User pen array
USHORT pen_count; // Number of pens;
i
Notes : Returns a structure with useful information about the Opus
screen. This structure is READ ONLY!
Call EXTCMD_FREE_SCREENDATA to free it.
Command : EXTCMD_FREE_SCREENDATA
Purpose : Free a DOpusScreenData structure
Packet : struct DOpusScreenData =
Returns : <none>
Notes : Frees the result of an EXTCMD_GET_SCREENDATA call

Command : EXTCMD_SEND_COMMAND
Purpose : Send an ARexx command to DOpus
Packet : struct command_packet {
xcommand; // Command to send

char

ULONG

char

ULONG
}i

flags; // Command

flags

xresult; // Result pointer
rc; // Result code

Returns : TRUE if the message was sent

Notes : This command allows you to send an ARexx instruction
directly to the Opus ARexx port. Set the COMMANDF_RESULT
flag if you want a result string returned; if one is,

the "result’

to it. You MUST call FreeVec()
have finished with the result.

1.14 AppXXX_routines

AppXXX routines

AllocAppMessage ()
AppWindowData ()
ChangeAppIcon ()
CheckAppMessage ()
FindAppWindow ()
FreeAppMessage ()

GetWBArgPath ()
ReplyAppMessage ()

SetAppIconMenuState ()

SetWBArg ()

field of the packet will contain a pointer

on this pointer when you

DOpusSDK 19/190

PURPOSE

The dopusb.library installs patches into the system when it loads to
intercept calls to the workbench.library AddAppXXX () functions. This
allows DOpus to show AppIcons, AppMenultems, and support drag and drop
onto AppWindows.

The emulation is transparent as far as a third-party application is
concerned, but it is possible to access additional features that DOpus
provides (especially for AppIcons). Obviously these are only available
through DOpus, and not through Workbench.

Using tags with the AddAppIcon() function, it is possible to control
the DOpus-only features of AppIcons. Workbench ignores these tags, and
so if Workbench is running as well it will just see the plain AppIcon
itself.

The tags are as follows
DAE_Local

This tag causes the icon to only be added to DOpus. If Workbench is
running as well, it will not see this icon. Supplying this tag

is probably a good idea if your Applcon depends on some of the other
DOpus-specific functions.

DAE_Snapshot

Indicates that this icon can support the Snapshot function. If this
tag is specified, the Snapshot item in the icon popup menu will be
enabled, and the Snapshot item in the main Icon menu will work.

Use of this tag generates AppSnapshotMsgs, see below for more
information.

DAE_Close

Turns the ’'Open’ item in the icon popup menu into a ’'Close’ item.
APPSNAPEF_CLOSE will be set in the AppSnapshotMsg that is
generated.

DAE_Info

Indicates that this icon can support the Information function.
This is similar in operation to the DAE_Snapshot tag. The
APPSNAPF_INFO flag will be set in the AppSnapshotMsg.

DAE_Menu

This tag can be used several times for one icon. It allows you to
specify additional entries for the icon popup menu. ti_Data points
to a string that is displayed for the menu item. The order these
tags are supplied specifies the order they are displayed, and
also controls the ID that is returned in AppSnapshotMsgs.

DAE_ToggleMenu

Similar to DAE_Menu, this allows you to specify a menu item for

DOpusSDK 20/190

the icon popup menu. The only difference is that the menu item
is a toggle-select item (analagous to CHECKIT for Intuition menus) .

DAE_ToggleMenuSel

The same as DAE_ToggleMenu, but specifies that the item is to be
selected by default (analagous to CHECKED for Intuition menus) .

DAE_MenuBase

This tag allows you to specify a base ID for menu IDs that

are generated via the DAE_Menu, DAE_ToggleMenu and DAE_ToggleMenuSel
tags. Menu IDs usually start at 0 for the first menu and increase
from there. If you specify the DAE_MenuBase tag, the menu IDs will
start from your supplied value.

DAE_Background

This allows you to specify a pen to use to render the background
colour of the icon. If not supplied, the default is pen 0.

DAE_Locked
This tag specifies that the icon position is to be locked.
That is, the user will be unable to reposition the icon from the

initial coordinates. This flag can be changed later using the

ChangeAppIcon ()
function.

Using the new tags can cause special messages to be sent to your
message port. These are an extension of the normal AppMessages,
and can be identified by an am_Type of MTYPE_APPSNAPSHOT.

The events you will get special messages for are
Snapshot
If the DAE_Snapshot tag was specified and the user snapshots your
icon, you will receive a message containing the icon position
(AppSnapshotMsg->position_x and AppSnapshotMsg->position_y) .
It is your responsibility to save these values, and use them

when adding the AppIcon in the future.

If the APPSNAPF_WINDOW_POS flag is set in the AppSnapshotMsg->flags
field, the position in AppSnapshotMsg->window_pos is also valid.

Un-Snapshot

If the DAE_Snapshot tag was specified and the user unsnapshots
your icon, you will receive a message with the APPSNAPF_UNSNAPSHOT
flag set.

Close

If DAE_Close was specified, and the user selects the Close item

DOpusSDK 21/190

in the icon popup menu, you will receive a message with the
APPSNAPF_CLOSE flag set.

Information

You will receive a message with the APPSNAPF_INFO flag set if you
specified the DAE_Info tag, and the user selects Information on your
icon.

Menu

If menus were added with the DAE_Menu tags, you will receive a
message with the APPSNAPF_MENU flag set when the user selects one
of your menu items. The AppSnapshotMsg->id field contains the
item ID. If the user pressed the help key on one of the items,
the APPSNAPF_HELP flag will also be set.

Directory Opus also sends additional information to AppWindows. If you
receive an AppMessage of type MTYPE_APPWINDOW, you should check to see
if it is an Opus message using the
CheckAppMessage ()
function. If so,
the message is a DOpusAppMessage, which contains additional information.
The extra fields are

da_DropPos

This field contains an array of Point structures. Each structure
gives the offset from the origin of each file in the message.
This allows you to maintain the relative positions of all icons
dropped in a multiple-file operation.

da_DragOffset

This Point structure gives you the offset of the primary icon
from the mouse pointer. That is, if the user clicked on the primary
icon in the top-left corner, this offset would be 0,0. If they
picked up the icon from the bottom-right corner, it might be 32,18.

da_Flags

The only flag supported so far is DAPPF_ICON_DROP. This indicates
that the files dropped were in fact icons (ie from an icon mode
lister).

The da_DropPos and da_DragOffset fields enable you to calculate the
exact position that the user dropped the files on. Normal AppMessages
only provide the position of the mouse pointer, which is useless if you
want to maintain the relative and correct positions of the icons.

1.15 AllocAppMessage()

NAME
AllocAppMessage — allocate a DOpusAppMessage

DOpusSDK 22/190

SYNOPSIS
AllocAppMessage (memory, port, count)
AO Al DO

DOpusAppMessage xAllocAppMessage (APTR, struct MsgPort =*, short);

FUNCTION
This function allows you to create a DOpusAppMessage (an extended
AppMessage) easily.

INPUTS
memory — memory handle or NULL (see memory.doc)
port - address of reply port
count - number of arguments

RESULT
Allocates a DOpusAppMessage, including space for count arguments
(both da_Msg.am_ArgList and da_DropPos will be initialised).

NOTES
Unless you actually want to send an AppMessage to a DOpus window
with relative icon positions, you don’t really need this function.
It does provide a convenient way to allocate an AppMessage, though,
and there’s no reason you can’t use DOpusAppMessages totally in
place of AppMessages if you want to.

SEE ALSO
FreeAppMessage ()

14

SetWBArg ()

1.16 AppWindowData()

NAME
AppWindowData - extract data from an AppWindow

SYNOPSIS
AppWindowData (appwindow, idptr, userdataptr)
AO0 Al A2

struct MsgPort xAppWindowData (APTR, ULONG %, ULONG x);

FUNCTION
This function returns the ID, Userdata and Message port associated
with the specified AppWindow. These are the parameters that are
supplied in the call to AddAppWindow.

INPUTS
appwindow - AppWindow handle
idptr - pointer to ULONG to contain the ID
userdataptr - pointer to ULONG to contain the Userdata

DOpusSDK 23/190

RESULT
The AppWindow ID and Userdata are stored in the variables supplied,
and the address of the AppWindow’s message port is returned.

SEE ALSO

FindAppWindow ()
, workbench.library/AddAppWindow ()

1.17 ChangeApplcon()

NAME
ChangeAppIcon - make changes to an Applcon

SYNOPSIS
ChangeAppIcon(icon, render, select, label, flags)
AQ Al A2 A3 DO

void ChangeAppIcon
(APTR, struct Image *, struct Image %, char =x,
ULONG) ;

FUNCTION
This function allows you to make changes to an ApplIcon that
was previously added to DOpus. It has no effect on the icon
on Workbench, so you should use the DAE_Local tag when adding
the icon if your program depends on this function.

You are able to change both frames of the icon’s image and the
icon’s label. You can also lock or unlock the icon’s position,
and make it busy.

INPUTS
icon - icon to act on, as returned by AddAppIcon ()
render - new main image for the icon
select - new select image for the icon
label - new label for the icon
flags - control flags. The available flags are

CAIF_RENDER change the main image
CAIF_SELECT - change the select image
CAIF_TITLE change the label
CAIF_LOCKED - change the "locked’ flag
CAIF_SET - use with CAIF_LOCKED
CAIF_BUSY - make icon busy

CATIF_UNBUSY - make icon unbusy

NOTES
To lock an icon, pass CAIF_LOCKED|CAIF_SET. To unlock it, pass
CAIF_LOCKED by itself. The render, select and label parameters are
ignored unless their corresponding flags are set. You can specify
any combination of these flags at once. To reduce the visible
effects, you should make as many changes with the one call as
possible.

DOpusSDK 247190

SEE ALSO

SetAppIconMenuState ()
, workbench.library/AddAppIcon

1.18 CheckAppMessage()

NAME
CheckAppMessage - check if an AppMessage is from DOpus

SYNOPSIS
CheckAppMessage (msqg)
AO

BOOL CheckAppMessage (DOpusAppMessage x*) ;

FUNCTION
This function allows you to discover whether an AppMessage is
actually an extended DOpusAppMessage.

INPUTS
msg — AppMessage to test

RESULT
Returns TRUE if the message is a DOpusAppMessage.

NOTES
You MUST only pass AppMessages (or DOpusAppMessages) to this
function. Passing other types of messages (eg IntuiMessages)
results in undefined behaviour.

SEE ALSO

AllocAppMessage ()

1.19 FindAppWindow()

NAME
FindAppWindow — test to see if a window is an AppWindow
SYNOPSIS
FindAppWindow (window)
A0

APTR FindAppWindow (struct Window x);

FUNCTION
This routine allows you to discover whether a Window is in fact
an AppWindow.

DOpusSDK 25/190

INPUTS
window — pointer to the window to test

RESULT
Returns the AppWindow handle if it is an AppWindow, or NULL if not.

NOTES
You should only use the returned value within a Forbid()/Permit (),
as the window in question could disappear at any time. Also note that
the system patches are not installed until the dopus5.library is
loaded. Any AppWindows added to the system before the patches are
installed are undetectable.

SEE ALSO

AppWindowData ()
, workbench.library/AddAppWindow ()

1.20 FreeAppMessage()

NAME
FreeAppMessage — frees a DOpusAppMessage

SYNOPSIS
FreeAppMessage (msqg)
AQ

void FreeAppMessage (DOpusAppMessage x*);

FUNCTION
This function frees the supplied DOpusAppMessage. It is only
designed for messages allocated with
AllocAppMessage

INPUTS
msg - message to free

NOTES
You should not use this routine for AppMessages you receive
(ie are sent by another process). You should ReplyMsg() those

messages as normal. This function is used to free DOpusAppMessages
that YOU create, usually when they are replied to by another
task.

SEE ALSO

AllocAppMessage ()

DOpusSDK 26/190

1.21 GetWBArgPath()

NAME
GetWBArgPath - extract pathname from WBArg

SYNOPSIS
GetWBArgPath (wbarg, buffer, size)
A0 Al DO

BOOL GetWBArgPath (struct WBArg =, char *, long);

FUNCTION
This function is provided as a convenient method of extracting
the pathname of a file/directory from a WBArg structure (usually
within an AppMessage) .

INPUTS
wbarg - pointer to the WBArg structure
buffer - buffer to write pathname to
size - size of buffer

RESULT
The full path and name of the object referred to by the WBArg
structure is copied to the supplied buffer. This routine returns
TRUE if it was successful.

1.22 ReplyAppMessage()

NAME
ReplyAppMessage — reply to an AppMessage

SYNOPSIS
ReplyAppMessage (msqg)
A0

void ReplyAppMessage (DOpusAppMessage *);

FUNCTION
This function is the best way to reply to a DOpusAppMessage. Its
operation is quite straightforward - if the message has a reply
port set, it calls ReplyMsg() as normal. Otherwise, it calls

FreeAppMessage
This allows messages to be sent with no reply
needed. Directory Opus will never send an AppMessage without a
reply port, but you might want to use this routine among your
OWNn processes.

INPUTS
msg — message to reply to

RESULT
The message is replied or freed.

DOpusSDK

27/190

SEE ALSO

FreeAppMessage ()

1.23 SetApplconMenuState()

NAME
SetAppIconMenuState - change the state of an icon popup menu
SYNOPSIS
SetAppIconMenuState (icon, item, state)
AQ DO D1

long SetAppIconMenuState (APTR, long, long);

FUNCTION
This allows you to set the state of a toggle-select menu item in
the icon popup menu of AppIlcons. These menu items would have been
added with the DAE_ToggleMenu and DAE_ToggleMenuSel tags.

INPUTS
icon - icon to act on, as returned by AddAppIcon()
item - number of item to change (in the order they were added)

state - new state for the item (TRUE=selected)

RESULT
Returns the old selection state of the item.

NOTES
This routine uses 0 as a base ID for the menu items, even if you
specified a new base with DAE_MenuBase.

SEE ALSO

ChangeAppIcon ()
, workbench.library/AddAppIcon

1.24 SetWBArg()

NAME
SetWBArg — fill out a WBArg entry in a DOpusAppMessage

SYNOPSIS
SetWBArg (msg, item, lock, name, memory)
A0 DO D1 Al A2

BOOL SetWBArg (DOpusAppMessage *, short, BPTR, char x, APTR);

DOpusSDK 28/190

FUNCTION
This routine makes it easy to initialise the WBArg structures
in an AppMessage (or a DOpusAppMessage) .

INPUTS
msg — AppMessage to initialise
item - item to initialise (starting at O0)
lock - lock on parent directory
name - name of file

memory - memory handle or NULL

RESULT
The specified WBArg in the AppMessage is initialised with the
lock and name specified. This routine returns TRUE if it was
successful.

NOTES
"lock’” is the lock of the item’s parent directory in the case of
files, or on the item itself in the case of directories. For files,
"name’ is the name of the file. ’'name’ is null for directories.

The lock and name you supply are both copied, so they do not need
to remain valid once this call is complete.

1.25 Arg_Routines

Argument Routines

ParseArgs ()

DisposeArgs ()

1.26 ParseArgs()

NAME
ParseArgs — easier interface to ReadArgs()
SYNOPSIS
ParseArgs (template, args)
A0 Al

FuncArgs =*ParseArgs (char %, char x);

FUNCTION
This routine makes it much more straightforward to use ReadArgs() to
parse an argument string. Using ReadArgs to parse a string requires
you to allocate and initialise a RDArgs structure and argument
array structure, and also requires the argument string to have a
newline character. This function automates this process for you.

INPUTS

DOpusSDK

29/190

template - pointer to ReadArgs template string
args — pointer to argument string (need not have a newline)

RESULT
If successful, this function returns a FuncArgs structure. This
structure has several fields, but the useful ones are

FA_Arguments

This is the argument array you should use. It is an array

of long %, each member of which points to the argument result
for the corresponding template entry. If you need to modify
any of the values in this array you can, as it is just a copy
of the real array.

FA_ Count
This contains the number of arguments in the template. Opus
counts the arguments in the template and initialises the

argument array accordingly.

The strings supplied to this function are not needed once the
function has returned.

NOTES
You should use this routine when parsing arguments supplied to
your Opus modules.

SEE ALSO

DisposeArgs ()
, dos.library/ReadArgs ()

1.27 DisposeArgs()

NAME
DisposeArgs - free a FuncArgs structure
SYNOPSIS
DisposeArgs (funcargs)
AQ

void DisposeArgs (FuncArgs x);

FUNCTION
This function frees the FuncArgs structure returned by
ParseArgs ()
INPUTS
funcargs - pointer to FuncArgs structure to free
RESULT

The structure is free. Once you have freed it, none of the arguments

DOpusSDK 30/190
remain valid, so you should make local copies of anything you need
to refer to.
SEE ALSO
ParseArgs ()
, dos.library/ReadArgs ()
1.28 BOOPSI_gadgets
BOOPSI Gadgets
CLASSES
dopusbuttongclass
dopuscheckgclass
dopusframeclass
dopusiclass
dopuslistviewgclass
dopuspalettegclass
dopusstrgclass
dopusviewgclass
PURPOSE
The dopus5.library makes several BOOPSI gadgets available globally.
These gadgets can be accessed globally without even opening the
dopus5.library, although it is a good idea to open it to make sure the
library is present in the system.
The gadgets are all sub-classes of standard BOOPSI gadgets, and so take
all the standard tags (GA_Left, GA_Top, etc..). Often they are based heavily

on GadTools gadgets and will support equivalent GadTools tags. They also

have their own set of tags,

1.29 dopusbuttongclass

dopusbuttongclass

which i1is described below.

The dopusbuttongclass provides a standard pushbutton gadget. It is
similar to a standard buttongclass gadget, but provides some additional

functionality.

This is via the following tags:

DOpusSDK 31/190

GTCustom_TextAttr (struct TextAttr x) (I) - used to specify a font for
the gadget label. (default is the window font).

GTCustom_ThinBorders (BOOL) (I) - if set to TRUE, the gadget will be
rendered with single-pixel borders (default FALSE).

GTCustom_Borderless (BOOL) (I) - if set to TRUE, the gadget will be
rendered with no border (default FALSE).

GTCustom_Bold (BOOL) (I) - is set to TRUE, the gadget label will be
rendered in bold (default FALSE).

GTCustom_Style (ULONG) (I) - use this tag to control the text style of
the gadget label. Valid flags are FSF_BOLD and FSF_ITALIC
(default FSF_NORMAL) .

GTCustom_NoGhost (BOOL) (I) - if set to TRUE, the gadget imagery will
not ’“ghost’ when the gadget is disabled (default FALSE).

GTCustom_TextPlacement (WORD) (I) - Lets you select the position of the
label relative to the gadget. Valid values are:

PLACETEXT_IN (default)
PLACETEXT_LEFT
PLACETEXT_RIGHT
PLACETEXT_ABOVE

1.30 dopuscheckgclass

dopuscheckgclass

The dopuscheckgclass provides a replacement for GadTools checkbox
gadgets. As a BOOPSI class, it allows you to have a checkbox without
using GadTools. This class uses the same basic code as the
dopusbuttongclass, and as such supports the same tags. The class also
supports the GTCB_Checked flag (defined in libraries/gadtools.h) to set
or get the current state of the gadget.

1.31 dopusframeclass

dopusframeclass

The dopusframeclass is a BOOPSI class for a frame gadget. A frame
gadget does not respond to user input; its only purpose is to draw a
frame (usually around some other gadgets). This class uses the same
basic code as the dopusbuttongclass, and as such supports the same tags.
The class also supports the GTCustom_ FrameFlags tag, to specify flags
for the frame. Currently, the only defined flag is AREAFLAG_RECESSED,
which causes the frame to be drawn as recessed.

DOpusSDK

32/190

1.32 dopusiclass

dopusiclass

This class allows you to access several predefined images. The
image you receive is controlled by the following tags:

DIA_Type
This sets the image type. Current valid types are:

IM_ARROW_UP - an up arrow
IM_ARROW_DOWN - a down arrow

IM _CHECK - a check mark

IM_DRAWER - a "folder" image

IM_BBOX — a filled box with a border
IM _BORDER_BOX - a filled box
IM_ICONIFY - an iconify gadget image
IM_LOCK - a lock gadget image

DIA_FrontPen

This sets the front pen for the image. Currently, only the
IM_CHECK image supports this tag.

This class is a sub-class of imageclass, and so supports the
standard IM_Width, IM_Height, etc, tags. Images are scaled to the
supplied sizes.

1.33 dopuslistviewgclass

dopuslistviewgclass

O O 0O O O O O

This boopsi gadget is a replacement for the gadtools LISTVIEW_KIND
gadgets. It has been designed to "drop-in" as easily as possible, and
uses many of the same tags as the gadtools equivalent. It is however
much more flexibile than the gadtools gadget.

The gadget duplicates most of the tags provided by gadtools’ listview
gadget. It also offers some powerful additions not available under
gadtools. These include

Current selection indicated by highlight bar, checkmark
or text colour

Multiple-selection of items with checkmarks

Items can be rendered in different colours

Simple text formatting in the lister

Scroller can be optionally removed

Supports drag notification

Automatic double-click notification

Supports resizing via OM_SET

It also does not suffer from the gadtools problem of resizing itself to

an

DOpusSDK 33/190

integral multiple of the item height (ie, the size you specify is the size
you get). It is controlled by the following tags:

DLV_Top (WORD) (ISG) - Top item visible in the listview. This value
will be made reasonable if out-of-range (defaults to 0).

DLV_MakeVisible (WORD) (IS) - Number of an item that should be forced
within the visible area of the listview by doing minimal scrolling.
This tag overrides DLV_Top.

DLV_Labels (struct List x or Att_List =x) (ISG) - List of nodes whose
In_Name fields are to be displayed in the listview. Calling
SetGadgetAttrs () and specifying 0 will remove the current list.
Specifying ~0 will remove the list but will not disturb the display,
allowing you to make changes to the contents and selection status.

DLV_ReadOnly (BOOL) (I) - If TRUE, then listview 1is read-only
(defaults to FALSE).

DLV_ScrollWidth (UWORD) (I) - Width of scroll bar for listview.
Must be greater than zero (defaults to 16).

DLV_ShowSelected (void) (I) - Specify this tag to have the currently
selected item displayed with a highlight bar (or another method).
Note that this tag does not support the automatic copying to
a string gadget that gadtools does. You should specify ti_Data
as 0 for future compatibility.

DLV_Selected (UWORD) (ISG) - Ordinal number of currently selected
item, or ~0 to have no current selection (defaults to ~0).

DLV_TextAttr (struct TextAttr %) (I) - Allows you to specify a font to
use in the lister. Must have previously been opened.

DLV_MultiSelect (BOOL) (I) - If TRUE, the listview allows multiple-
selection of items (see below for details).

DLV_Check (BOOL) (I) - If TRUE, and DLV_ShowSelected is TRUE, the
current selection will be indicated with a checkmark. Note that
this tag has no meaning in conjunction with DLV_MultiSelect.

DLV_ShowChecks (ULONG) (I) - If set to something other than zero,
checkmarks will be shown for selected items (see below for
details), but the user will not be able to alter their state.

If set to 1, selected items will be rendered in the highlight
pen colour. If set to 2, they will be rendered in the normal
text colour.

DLV_Highlight (BOOL) (I) - If TRUE, and DLV_ShowSelected is TRUE, the
current selection will be displayed in a different colour.

DLV_NoScroller (BOOL) (I) - If TRUE, the lister will not have a scroller
attached. The gadget will still support scrolling by "dragging”
the selection highlight.

DLV_TopJustify (BOOL) (I) - If TRUE, items displayed in the lister will

DOpusSDK

34 /190

be aligned to the top of the gadget, rather than being centered
vertically.

DLV_Flags (ULONG) (I) - Allows you to specify layout flags for the lister.
Currently the only flags supported are

PLACETEXT_ABOVE - display title above gadget (default)

PLACETEXT_LEFT - display title at top-left of gadget
DLV_RightJustify (BOOL) (I) - If TRUE, items displayed in the lister
will be aligned to the right of the gadget, rather than to the
left.
DLV_ShowFilenames (BOOL) (I) - If TRUE, items in the lister are taken to

be pathnames to files, and only the filename component (ie the
result of a FilePart() call) is displayed. This allows you to keep
the full pathname in 1ln_Name but only display the filename.

DLV_DragNotify (ULONG) (I) - If this is set to something other than zero,
the gadget will notify you when the user tries to drag an item
out of it. See the section on DragNotify below.

DLV_ScrollUp (void) (S) - Use this tag with SetGadgetAttrs () to make the
lister scroll up one line.

DLV_ScrollDown (void) (S) - Use this tag with SetGadgetAttrs () to make the
lister scroll down one line.

DLV_SelectPrevious (void) (S) - Use this tag with SetGadgetAttrs() to make
the previous entry become selected.

DLV_SelectNext (void) (S) - Use this tag with SetGadgetAttrs () to make
the next entry become selected.

DLV_Lines (void) (G) - returns number of visible lines displayed in lister.

DLV_Object (void) (G) - returns the address of the Object % structure.

DLV_GetLine (void) (G) - this allows you to get the line number in the
lister from window-relative mouse coordinates. StoragePtr should be
initialised to the mouse coordinates ((x<<16) |y).

DLV_DrawLine (void) (G) - this allows you to render a line of the listview
into your own RastPort. See the section on DragNotify below
for more information.

The gadget is a subclass of gadgetclass and as such supports the
standard gadgetclass tags (including GA_Disabled). The title of
the gadget can be specified with GA_Text (GA_IntuiText and
GA_LabelImage are not supported).

MULTIPLE SELECTION

The dopuslistviewgclass gadget supports multiple-selection of items.
This feature is enabled by passing {DLV_MultiSelect,TRUE} on creation.
The 1n_Type field of each of the node structures is used to

DOpusSDK 35/190

indicate whether an item is selected or not. For convenience, this
field has been renamed lve_Flags.

To see whether an item is selected, test the LVEF_SELECTED flag in
the lve_Flags field. Similarly, you can set an item’s selection
status by changing the value of this flag.

CUSTOM PEN COLOURS

You can specify the individual pen colours of each of the items in
the list. The 1In_Pri field of each of the node structures is used
for this purpose. For convenience, this field has been renamed
lve_Pen.

To specify that an item is to be rendered in other than the default
pen colour, set lve_Pen to the appropriate value and set the
LVEF_USE_PEN flag in the lve_Flags field.

TEXT FORMATTING

The gadget supports simple text-formatting for item display. This
allows you to have columns and right-justified text in the lister.

If the text for an entry (ln_Name) contains a \t (tab character),
the text following that character will be right-justified in the
lister.

You can specify column positions using the \a (alert) character.

The character immediately following the \a provides the position

for the start of the next column. This is specified in character

spaces. You should be aware that characters in proportional fonts
are often wider than the nominal width of the font.

For example, if the following items were supplied to the gadget
Bloggs\a\xa Fred\a\xla 1-Sep-65\tPaid
Hallla\xa Janela\xla 9-Aug-68\tNot paid

Hubbard\a\xa Bill\a\xla 7-Mar-18\tPaid

The display you would see would be something like this

Bloggs Fred 1-Sep-65 Paid
Hall Jane 9-Aug-68 Not paid
Hubbard Bill 7-Mar-18 Paid

DRAG NOTIFICATION

To enable drag notification, pass {DLV_DragNotify,1} on creation.
You will then be sent an extended taglist via the IDCMP_IDCMPUPDATE
message when the user attempts to drag an item out of the list.

If you pass {DLV_DragNotify,2} the user will only be able to drag
out of the list sideways; dragging up or down will scroll the list
as usual.

DOpusSDK 36/190

The tags you are sent on an attempted drag are as follows
Tag Data

GA_ID gadget ID

GA_Left

GA_Top window-relative item coordinates
GA_Width

GA_Height size of the item as displayed
GA_RelRight

GA_RelBottom offset mouse position in item
DLV_Top top item number

DLV_DragNotify ordinal number of item dragged

To see if an IDCMP_IDCMPUDPATE message is from a drag, just test
for the presence of the DLV_DragNotify tag in the taglist.

Once you get a drag notification, the actual dragging of the item

is your responsibility. The easiest way is using the drag routines
provided by the dopusb5.library. Create a DragInfo large enough for the
item (GA_Width and GA_Height in the taglist). There are two ways to get
the image for the bitmap.

The first way is to use the GA_Left and GA_Top coordinates in the
taglist and just ClipBlit () from your window into the drag rastport.
This is the easiest way, but will also copy the checkmark if there is
one, and you may not want that.

The second way is to use the DLV_DrawLine tag with the GetAttr ()
call, and have the listview render the item into your bitmap for you.

To do this, you need to initialise a ListViewDraw structure

lvdraw. rp RastPort to render into
lvdraw.drawinfo DrawInfo for the screen
lvdraw.node List node to render
lvdraw.line Set to O

lvdraw.box.Left Set to O
lvdraw.box.Top Set to O
lvdraw.box.Width Width of BitMap
lvdraw.box.Height Height of BitMap

Then you pass the address of the ListViewDraw structure as the
StoragePtr for the GetAttr call. Eg,

ULONG *ptr=(ULONG) &lvdraw;
Object xobj=GetTagData (DLV_Object,0,tags);

GetAttr (DLV_DrawLine, obj, &ptr);
The GA_RelRight and GA_RelBottom tags are used to indicate where

in the item the user clicked. When you display the drag image on
the screen, you should offset its position by these values.

DOUBLE-CLICK NOTIFICATION

DOpusSDK 37/190

If you get an IDCMP_IDCMPUPDATE message from the gadget, and the
DLV_DragNotify tag is not set, it is a normal selection message.
An additional tag is sent in this situation; DLV_DoubleClick.
The ti_Data field is a boolean indicating whether the selection
is a double-click or a normal single click.

The tags now sent for this message are
Tag Data

GA_ID Gadget ID
DLV_Selected Ordinal number of selection
DLV_DoubleClick BOOL

RESIZING

To resize the gadget, pass the new coordinates via GA_Left, GA_Top,
GA_Width and GA_Height in a SetGadgetAttrs () call. You will then need
to refresh the display yourself, usually by clearing the window and
calling RefreshGList (). You may also need to call RefreshWindowFrame (),
if the window has been resized smaller, as the gadget may have
overwritten the window border before it was resized.

1.34 dopuspalettegclass

dopuspalettegclass

The dopuspalettegclass provides a replacement for GadTools PALETTE_KIND
gadgets. As a BOOPSI class, it allows you to have a palette gadget without
using GadTools. This class supports the following tags:

GTCustom_TextAttr (struct TextAttr x) (I) - used to specify a font for
the gadget label. (default is the window font).

GTCustom_ThinBorders (BOOL) (I) - if set to TRUE, the gadget will be
rendered with single-pixel borders (default FALSE).

GTPA_Color (UBYTE) (ISG) - the currently selected colour of the palette.
This number is a pen number, and not the ordinal colour number within
the palette gadget itself (default 1).

GTPA_Depth (UWORD) (IS) - Number of bitplanes in the palette (default 1).

GTPA_ColorTable (UBYTE %) (IS) - Pointer to a table of pen numbers
indicating which colours should be used and edited by the palette
gadget. This array must contain as many entries as there are colours
displayed in the palette gadget. The array provided with this tag
must remain valid for the life of the gadget, or until a new table
is provided. (default is NULL, which causes a 1-to-1 mapping of pen
numbers) .

GTPA_NumColors (UWORD) (IS) - Number of colours to display in the palette
gadget. This overrides GTPA_Depth and allows numbers which aren’t
powers of 2. (defaults to 2)

DOpusSDK

38/190

DPG_Pen (UWORD) (ISG) - the currently selected colour of the palette.
This is similar to GTPA_Color but referes to the ordinal colour
number and not the pen number itself.

DPG_SelectNext (void) (S) - use this tag with SetGadgetAttrs () to cause
the next colour in the gadget to be selected.

DPG_SelectPrevious (void) (S) - use this tag with SetGadgetAttrs() to
cause the previous colour in the gadget to be selected.

1.35 dopusstrgclass

dopusstrgclass

This dopusstrgclass provides a replacement for GadTools STRING_KIND
gadgets. It is basically a standard string gadget with an automatic
border, but also supports additional features. This class is based

on the dopusbuttongclass, and as such supports all the tags of that
class. It is also a subclass of strgclass and supports the standard
string gadget tags of that class (with some important changes, listed
below). The control tags supported by this class are as follows:

STRINGA_Buffer (char x) (I) - Specify the main buffer for the gadget.
If this is not supplied, a buffer will be allocated automatically
(this does not suffer from the maximum 128 bytes limitation of the
standard BOOPSI string gadget class).

STRINGA_UndoBuffer (char %) (I) - Specify the undo buffer for the
gadget. Again, one will be allocated automatically if you do not
supply one.

STRINGA_WorkBuffer (char %) (I) - Specify the work buffer for the
gadget. This will also be automatically allocated if you do not
supply it.

STRINGA_MaxChars (long) (I) - Specify the maximum length of the string

editable by this gadget. If buffers are allocated automatically,
they will be this size. GTST_MaxChars and GTIN_MaxChars are also
synonyms for this tag. (defaults to 40).

STRINGA_Font (struct TextFont x) (I) - Specify the font to use for this
gadget.
GTCustom_ChangeSigTask (struct Task =) (I) - Specify a task that is to

be signalled whenever the contents of this gadget change.
(defaults to NULL) .

GTCustom_ChangeSigBit (BYTE) (I) - Specify the signal bit that is used
to signal a task whenever the contents of this gadget change.
(defaults to 0).

STRINGA_TextVal (char =) (IS) - Set the contents of the string gadget.
The supplied string is copied to the buffer. GTST_String, GITX_Text,
GTIN_Number and GTNM_Number are valid synonyms for this tag.

DOpusSDK 39/190

To use the dopus5.library edit hook with a string gadget, you should
call
GetEditHook ()
and pass the results with the STRINGA_EditHook tag.

1.36 dopusviewgclass

dopusviewgclass
This class provides a simple view gadget, similar to GadTools TEXT_KIND
and NUMBER_KIND gadgets. It is a subclass of dopusbuttongclass, and so
supports all the tags of that class. To set the contents of the view

gadget, use the GTTX_Text or GTNM_Number tags (a view gadget can be
used to display either text or a number interchangeably).

1.37 BuflO_Routines

Buffered I/0 Routines

CloseBuf ()
ExamineBuf ()
FHFromBuf ()
FlushBuf ()
OpenBuf ()
ReadBuf ()
SeekBuf ()

WriteBuf ()

1.38 CloseBuf()

NAME
CloseBuf - close a buffered file

SYNOPSIS
CloseBuf (file)
A0

void CloseBuf (APTR) ;

DOpusSDK 40/190

FUNCTION
Closes a file opened with
OpenBuf ()

INPUTS
file - file to close

RESULT
Any write data in the buffer is written to disk and the
file is closed.

SEE ALSO

OpenBuf ()

1.39 ExamineBuf()

NAME
ExamineBuf - Examine an open file
SYNOPSIS
ExamineBuf (file, fib)
AQ Al

long ExamineBuf (APTR, struct FileInfoBlock x);

FUNCTION
This function calls ExamineFH() on the underlying DOS file handle.

INPUTS
file - file to examine
fib - FileInfoBlock structure, must be longword aligned

RESULT
Returns DOSTRUE if successful. The FileInfoBlock will contain
information about the open file.

BUGS
If the file is open for writing, the file size reported by this
function may not be accurate.

SEE ALSO

OpenBuf ()
, dos.library/ExamineFH ()

1.40 FHFromBuf()

DOpusSDK 41/190

NAME
FHFromBuf - get DOS file handle

SYNOPSIS

FHEromBuf (file)
A0

BPTR FHFromBuf (APTR) ;
FUNCTION
This function returns the underlying DOS file handle for a

buffered IO handle.

INPUTS
file - buffered IO file handle

RESULT
Returns the file handle.

SEE ALSO

OpenBuf ()

1.41 FlushBuf()

NAME
FlushBuf - flush file buffer

SYNOPSIS
FlushBuf (file)
A0

void FlushBuf (APTR) ;

FUNCTION
This function flushes the buffer of a buffered IO file. If there
is any write data in the buffer, it is written to disk.

INPUTS
file - file handle to flush

RESULT
The buffer is flushed.

NOTES
In practice, you never need to call this function.

SEE ALSO

OpenBuf ()

4

WriteBuf ()

4

DOpusSDK 42/190

ReadBuf ()

1.42 OpenBuf()

NAME
OpenBuf - open a file for buffered I/0

SYNOPSIS
OpenBuf (name, mode, bufsize)
A0 DO D1

APTR OpenBuf (char *, long, long);

FUNCTION
This function opens a file for use with the buffered I/0 routines.

INPUTS
name - name of the file to open
mode - mode to use
bufsize - size of the buffer to use

RESULT
Returns a buffered file handle if successful, or NULL. This is
not a standard DOS file handle, and can only be used with the
other buffered IO functions.

SEE ALSO

CloseBuf ()
, dos.library/Open ()

1.43 ReadBuf()

NAME
ReadBuf - read data from a buffered file

SYNOPSIS
ReadBuf (file, buffer, size)
AQ Al DO

long ReadBuf (APTR, char =, long);

FUNCTION
This function reads data from a buffered IO file.

INPUTS
file - buffered IO file handle
buffer - buffer to place data in
size - size to read

DOpusSDK

43/190

RESULT
This function returns the size of the data actually read,
or -1 if an error occurred.

SEE ALSO

OpenBuf ()
, dos.library/Read()

1.44 SeekBuf()

NAME
SeekBuf - seek within a buffered IO file

SYNOPSIS
SeekBuf (file, offset, mode)
A0 DO D1

long SeekBuf (APTR, long, long);

FUNCTION

This function sets the read/write position for a buffered IO file.

If the seek takes the position outside of the current buffer, the
buffer will be flushed and re-read automatically.

INPUTS
file - file to seek within

offset — offset to seek
mode - type of seet (OFFSET_BEGINNING, OFFSET_CURRENT, OFFSET_END)

RESULT
Returns the previous file position.

SEE ALSO

OpenBuf ()
, dos.library/Seek ()

1.45 WriteBuf()

NAME
WriteBuf - write data to a buffered IO file

SYNOPSIS
WriteBuf (file, data, size)
A0 Al DO

long WriteBuf (APTR, char =, long);

FUNCTION

DOpusSDK 447190

Writes data to a file opened for buffered IO.
INPUTS

file — file handle

data - data to write

size - size to write (-1 works for a null-terminated string)

RESULT
Returns the number of bytes written, or -1 for an error.

SEE ALSO

OpenBuf ()
, dos.library/Write ()

1.46 Clipboard_Routines

Clipboard Routines

CloseClipBoard()
OpenClipBoard ()
ReadClipString ()

WriteClipString/()

1.47 CloseClipBoard()

NAME
CloseClipBoard - close a clipboard handle

SYNOPSIS
CloseClipBoard (handle)
A0

void CloseClipBoard (APTR);

FUNCTION
Closes a handle to the clipboard opened with
OpenClipBoard()
INPUTS

handle - clipboard handle

RESULT
The clipboard unit is closed.

DOpusSDK 45/190

SEE ALSO

OpenClipBoard/()

1.48 OpenClipBoard()

NAME
OpenClipBoard - open clipboard for easy access
SYNOPSIS
OpenClipBoard (unit)
DO

APTR OpenClipBoard (ULONG) ;

FUNCTION
This function opens a specified unit of the clipboard.device. Used
with the other clipboard functions, it provides an easy method to

manipulate text strings with the clipboard.

INPUTS
unit - unit number to open (usually 0)

RESULT
Returns clipboard handle.

SEE ALSO

CloseClipBoard()

1.49 ReadClipString()

NAME
ReadClipString - read a text string from the clipboard

SYNOPSIS
ReadClipString (handle, buffer, size)
A0 Al DO

long ReadClipString (APTR, char %, long);

FUNCTION
This function reads a string of text from the clipboard handle.

INPUTS
handle - clipboard handle
buffer - buffer to store string
size - size of buffer

RESULT

DOpusSDK 46/190

Returns the length of the string. If there was no valid FTXT string
in the clipboard, it returns 0.

SEE ALSO
OpenClipBoard()

4

WriteClipString()

1.50 WriteClipString()

NAME
WriteClipString - write a text string to the clipboard

SYNOPSIS
WriteClipString (handle, buffer, size)
A0 Al DO

BOOL WriteClipString(APTR, char =, long);

FUNCTION
This function writes a string of text to the clipboard handle.

INPUTS
handle - clipboard handle
buffer - buffer containing string
size - length of string

RESULT
Returns TRUE if it succeeded, FALSE otherwise. The string is stored
in standard FTXT format, readable by
ReadClipString ()
and most
other programs that access the clipboard.
SEE ALSO
OpenClipBoard/()

4

ReadClipString()

1.51 DisklO_Routines

Disk I/0 Routines

OpenDisk ()

CloseDisk ()

DOpusSDK 477190

1.52 OpenDisk()

NAME
OpenDisk - open a disk for direct I/0

SYNOPSIS
OpenDisk (disk, port)
A0 Al

DiskHandle #*OpenDisk (char x, struct MsgPort x);

FUNCTION
This routine makes it easy to access the underlying device for
direct I/0. It allows you to open any filesystem (that supports
direct I/0) with just the device name.

INPUTS
disk - name of disk to open, eg DFO:, HDl:
port — message port to use, or NULL

RESULT
If this function succeeds, it returns a DiskHandle structure,
which contains all the information you need to access the device
directly. The structure fields are

dh_Port
If you did not supply a message port to use, one is
created automatically and its address is stored here. Usually
you will want a port created for you, but if you are working
with multiple devices at once you might want them all to share
the same message port.

dh_I0
This is a pointer to an IOExtTD structure, which you can use
to perform I/0O on the device.

dh_Startup
A pointer to the FileSysStartupMsg of the device.

dh_Geo
A pointer to the DosEnvec structure of the device.

dh_Device
Full device name (without a colon)

dh_Info/dh_Result
If dh_Result is TRUE, dh_Info is wvalid, and contains current
information about the disk.

dh_Root/dh_BlockSize
These give the block number of the disk’s root block, and
the block size.

SEE ALSO

CloseDisk ()

DOpusSDK 48/190

, trackdisk.doc

1.53 CloseDisk()

NAME
CloseDisk - close a DiskHandle structure

SYNOPSIS

CloseDisk (handle)
AQ

void CloseDisk (DiskHandle =«);

FUNCTION
This function cleans up and closes a DiskHandle structure opened
with the

OpenDisk ()

routine.

INPUTS
handle - DiskHandle to close

SEE ALSO

OpenDisk ()

1.54 DOS Routines

DOS Routines

DateFromStrings ()
DeviceFromHandler ()
DeviceFromLock ()
DevNameFromLock ()
FreeDosPathList ()
GetDosPathList ()
GetFileVersion ()
LaunchCLI ()
LaunchWB ()

ParseDateStrings ()

DOpusSDK 49/190

SearchFile ()

SetEnv ()

1.55 DateFromStrings()

NAME
DateFromStrings - convert date and time strings to a datestamp

SYNOPSIS
DateFromStrings (date, time, ds)
AO Al A2

BOOL DateFromStrings (char x, char x, struct DateStamp *);

FUNCTION
This routine takes a date string and a time string and converts them
to a DOS DateStamp. The DOS StrToDate() routine is used to perform
this conversion, so it is sensitive to the current locale. If the
time string contains an 'a’ or a 'p’ to signify am or pm, it
is automatically converted to 24 hour time for the DOS call.

INPUTS
date - date string to convert
time - time string to convert

ds — DateStamp to store result

RESULT
Returns TRUE if successful.

SEE ALSO

ParseDateStrings ()
, dos.library/StrToDate ()

1.56 DeviceFromHandler()

NAME
DeviceFromHandler - returns device name from handler
SYNOPSIS
DeviceFromHandler (handler, buffer)
A0 Al

struct DosList xDeviceFromHandler (struct MsgPort =x, char x);

FUNCTION
This function takes a pointer to a filesystem’s handler
(message port) and returns the associated device name.

DOpusSDK 50/190

INPUTS
handler - pointer to handler message port
buffer - buffer to store device name (must be >=34 bytes)

RESULT
If the port supplied is a valid filesystem handler, the
name of the device is stored in the supplied buffer, and
a pointer to the DosList entry for that device is returned.

SEE ALSO
DeviceFromLock ()

4

DevNameFromLock ()

1.57 DeviceFromLock()

NAME
DeviceFromLock — returns device name from a filelock
SYNOPSIS
DeviceFromLock (lock, buffer)
A0 Al

struct DosList xDeviceFromLock (BPTR, char =«*);

FUNCTION
This function takes a filelock and returns the name of the
device that lock resides on.

INPUTS

lock - pointer to lock

buffer - buffer to store device name (must be >=34 bytes)
RESULT

The name of the device is stored in the supplied buffer, and
a pointer to the DosList entry for that device is returned.

SEE ALSO
DeviceFromHandler ()

4

DevNameFromLock ()

1.58 DevNameFromLock()

NAME
DevNameFromLock - return the full pathname of a file

DOpusSDK 51/190

SYNOPSIS
DevNameFromLock (lock, buffer, size)
D1 D2 D3

BOOL DevNameFromLock (BPTR, char %, long);

FUNCTION
Returns a fully qualified path for the lock. The only difference
between this function and the equivalent DOS library routine is
that the device name of the disk is returned, rather than the
volume name.

For example, if the NameFromLock () routine returned
Workbench:S/startup-sequence
The DevNameFromLock () routine would return
DHO:S/startup-sequence
INPUTS
lock - filelock to obtain the path for
buffer - buffer to store path

size - size of buffer

RESULT
This function returns TRUE if it succeeds.

SEE ALSO

DeviceFromLock ()
, dos.library/NameFromLock ()

1.59 FreeDosPathList()

NAME
FreeDosPathList - free a DOS path list

SYNOPSIS
FreeDosPathList (1list)
A0

void FreeDosPathList (BPTR) ;
FUNCTION
This function frees a standard DOS path list, by unlocking each

lock and FreeVec()ing each entry.

INPUTS
list - pointer to head of 1list

RESULT
The list is freed.

DOpusSDK 52/190

SEE ALSO

GetDosPathList ()

1.60 GetDosPathList()

NAME
GetDosPathList - get a copy of a DOS path list

SYNOPSIS
GetDosPathList (1list)
AQ

BPTR GetDosPathList (BPTR);

FUNCTION
This routine has two uses. The first is to copy an existing DOS
path list that you supply. The second is to attempt to find and copy
the system path list.

INPUTS
list - path list to copy or NULL

RESULT
If you supply a path list, it will be copied and the address of the
first entry of the new list will be returned.

If you pass NULL, this routine attempts to find a system path list to
copy. The Amiga has no definitive path list, so the only way to
obtain one is to copy it from another process. This routine looks for
the following processes (in order) : Workbench, Initial CLI, Shell
Process, New_WShell and Background CLI. If one of these processes is
found and it has a wvalid path list, that list is copied and returned
to you.

NOTES
If Workbench is not running, Opus creates a dummy task called
"Workbench’, purely to provide a path list for programs that use this
method.

SEE ALSO

FreeDosPathList ()

1.61 GetFileVersion()

NAME
GetFileVersion - get a file’s version information

DOpusSDK 53/190

SYNOPSIS
GetFileVersion (name, verptr, revptr, date, progress)
AO DO D1 Al A2

BOOL GetFileVersion (char =, short =, short =*,
struct DateStamp =*, APTR);

FUNCTION
This routine examines the given file and returns the file’s wversion
number and revision, and creation date if available. It looks primarily
for a $VER string, but also understands the format of libraries,
devices, etc, and can extract the version from the Romtag structure in
the file. You can also supply a Progress handle if you want to use a
progress indicator while looking for the version information.

INPUTS
name - full pathname of file to examine
verptr - pointer to short to receive the version number
revptr - pointer to short to receive the revision number

date - pointer to DateStamp structure (NULL if no date needed)
progress - pointer to progress indicator (or NULL)

RESULT

Returns TRUE if a valid version number was found (this does not
necessarily mean that a date was found too).

1.62 LaunchCLI()

NAME
LaunchCLI - launch a program as a CLI process
SYNOPSIS
LaunchCLI (name, screen, curdir, input, output, wait)
A0 Al DO D1 D2 D3

BOOL LaunchCLI (char %, struct Screen x, BPTR, BPTR, BPTR, short);

FUNCTION
This routine makes it easy to launch a program as a CLI process. The
launched process will have a full path list and copy of local
environment variables. You can have the process launched synchronously,
which means this function would not return until the process quit.
The stack size is fixed to 4096 bytes.

INPUTS
name - name of the program to launch, including any arguments
screen - a screen for errors to appear on (or NULL for default)
curdir - lock for current directory, or NULL for default
input - file handle for standard input, or NULL
output - file handle for standard output, or NULL
wait - set to TRUE if you want to wait for the process to return

RESULT
Returns TRUE if the process was launched successfully. If the
"wait’ parameter was set to TRUE, will not return until the child

DOpusSDK 54 /190

process does.

NOTES
This function will search the current path list for your program
if you do not specify the full path.

SEE ALSO

LaunchwWB
, dos.library/SystemTagList

1.63 LaunchWB()

NAME
LaunchWB - launch a program as a Workbench process

SYNOPSIS
LaunchWB (name, screen, wait)
A0 Al DO

BOOL LaunchWB (char =, struct Screen %, short);

FUNCTION
This routine makes it easy to launch a program as a Workbench process.
Workbench processes expect to receive a startup message from the
launching process, and ordinarily the launching process must wait
until this message is replied to. Using this function relieves you
of this - you can launch the process and then forget about it.
The launched process will have a full path list and copy of local
environment variables.

INPUTS
name - name of the program to launch, including any arguments
screen — a screen for errors to appear on (or NULL for default)
wait - set to TRUE if you want to wait for the process to return

RESULT
Returns TRUE if the process was launched successfully. If the
"wait’ parameter was set to TRUE, will not return until the child
process does. Otherwise, it will return immediately and you do not
need to wait for a reply to the startup message.

NOTES
This function will search the current path list for your program
if you do not specify the full path.

SEE ALSO

LaunchCLI
, dos.library/SystemTagList

DOpusSDK

55/190

1.64 ParseDateStrings()

NAME

ParseDateStrings - parse a date/time string into separate buffers

SYNOPSIS
ParseDateStrings (string, date,
AQ Al A2 A3

char *ParseDateStrings (char =x,

FUNCTION
This function takes a date/time

splits the date and time elements into separate buffers.
character to indicate ranges.
"10-jan-94 > 15-jun-95" would indicate any date between

supports the use of the >’
example,
those dates.

INPUTS

string - combined date/time string.
to handle it if the time comes before the date,
and it also deals reasonably well with

vice versa,

time, rangeptr)
char x, char %, long x*);
string (eg "8-12-95 10:34:18") and
It also

For

This routine is smart enough
or

different types of date inputs.

date - buffer to receive the date component (>=22 bytes)
time - buffer to receive the time component (>=22 bytes)
rangeptr - long pointer to receive the range code (or NULL)

RESULT

The return from this function is a pointer to the end of the

parsed part of the input string.

(to signify a range between two
ParseDateStrings () again on the
next date and time.

SEE ALSO

DateFromStrings ()

1.65 SearchFile()

If the range returns RANGE_BETWEEN
dates), you will need to call
remainder of the string to get the

NAME
SearchFile - search a file or buffer for a text string
SYNOPSIS
SearchFile(file, text, flags, buffer, bufsize)
AQ Al DO A2 D1

long SearchFile (APTR, UBYTE =x,

FUNCTION
This routine searches a file,
a specified text string.

ULONG, UBYTE x,

either on disk or in memory,
It supports hex or decimal ascii wvalues,

ULONG) ;

for

DOpusSDK 56 /190

and limited wildcard searching. To search for a hex string,

the supplied search string should begin with a $ and then consist
of two-character hex codes. When searching for plain text, a
decimal ascii value can be specified with a \ character (eg \127).
A literal \ is given as \\. A question mark (?) is used as a
single wildcard character in both hex and text searches.

INPUTS
file - buffered IO file handle
text - text string to search for

flags - Combination of the following flags

SEARCH_NOCASE - not case sensitive
SEARCH_WILDCARD - support ? as a wildcard character
SEARCH_ONLYWORDS - only match whole words

buffer - memory buffer to search if no file specified
bufsize - size of memory buffer

RESULT
If the supplied string is found, the offset within the file/buffer
of the first instance is returned. If no match is found or an error
occurs, -1 is returned.

1.66 SetEnv()

NAME
SetEnv - set a global environment variable

SYNOPSIS
SetEnv (name, string, permanent)
A0 Al DO

void SetEnv (char *, char %, BOOL);

FUNCTION
This routine sets the named environment variable to the supplied
string value, and optionally saves it permanently.

INPUTS
name - name of the variable to set
string - text string to set the variable to (must be null-terminated)
permanent — set to TRUE if you want the wvariable saved

RESULT

The environment variable will be created if it does not exist. Any
sub-directories that are needed will also be created. For example,
if you set the variable "foo/bar/baz", the directories "env:foo"
and "env:foo/bar" would be automatically created if they did not
exist. If you set the ’"permanent’ flag to TRUE, the variable

will also be created in the ENVARC: directory.

SEE ALSO

DOpusSDK 57 /190

dos.library/GetVar

1.67 Drag_Routines

Drag Routines

FreeDragInfo ()
GetDragImage ()
GetDragInfo ()
GetDragMask ()
HideDragImage ()
ShowDragImage ()

StampDragImage ()
PURPOSE

No, this isn’t a new form of software-based caberet act. The drag
routines in the dopus5.library make it easy for you to implement your
own drag and drop system.
The DragInfo structure is the key of this system. Calling the
GetDragInfo ()
function will create one of these structures, and you
use it in all subsequent calls.
The important fields of the DragInfo structure are
flags You can set flags to modify the behavior of dragged images.
DRAGF_OPAQUE indicates that the drag image should be opaque;
that is, colour 0 does not allow the background to show

through.

DRAGF_NO_LOCK indicates that the drag routines should not
lock the screen layers themselves.

DRAGF_TRANSPARENT indicates that the drag image should be
transparent. Used in conjunction with DRAGF_OPAQUE, it

allows you to create irregular shaped images.

drag_rp This is a RastPort that you can use to draw into the
drag image.

The other fields of the DragInfo structure can be used by you, but
normally they should be left alone.

The usual process of dragging an image is

DOpusSDK 58/190

GetDragInfo ()
2. Either render into di->drag_rp or call
GetDragImage ()
3. Call
GetDragMask ()
if you rendered directly
4, If you set DRAGF_NO_LOCK, LockLayers()
5. Multiple calls to
ShowDragImage ()
to make the image visible
and move it around (in response to mouse movements)

FreeDragInfo ()
to remove the image
7. If DRAGF_NO_LOCK was set, UnlockLayers ()

The Amiga OS has a bug which can cause a deadlock if another task attempts
to call LockLayers () while you have them locked. If you are dragging over
the entire screen rather than an individual window, you will need to take
additional steps to prevent this deadlock.

You need to set up a timer event, roughly every half second or so (the
dopus5.library timer routines are ideal for this purpose). You also need
to have the IDCMP_INTUITICKS flag set for your window. You then must
keep a count of the number of IDCMP_INTUITICKS messages received. Every
time your periodic timer event comes around, you must examine this count
to see if it has changed. As INTUITICKS are sent roughly every 10th of
a second, one or more should have been received between each of your
timer events. If no INTUITICKS were received, it’s a fair bet that
Intuition has deadlocked itself, and you should immediately call
UnlockLayers () (or

HideDragImage ()

) to unfreeze the system.

1.68 FreeDraginfo()

NAME
FreeDragInfo - frees a DragInfo structure
SYNOPSIS
FreeDragInfo (drag)
AQ

void FreeDragInfo (DragInfo «x);
FUNCTION
This function removes a drag image from the display if it is still

visible, and frees the DragInfo structure.

INPUTS
drag - structure to free

SEE ALSO

DOpusSDK 59/190

GetDragInfo ()

1.69 GetDraglmage()

NAME
GetDragImage - pick up on-screen imagery to drag

SYNOPSIS
GetDragImage (drag, x, V)
A0 DO D1

void GetDragImage (DragInfo %, long, long);

FUNCTION
This routine copies on-screen image data into the rastport of the
specified DragInfo structure. If the drag image is visible when this
routine is called, it is cleared before the data is copied.

INPUTS
drag - DragInfo structure
x — x-position on screen
y — y-position on screen
RESULT
The image data is copied from the Bitmap of the Window that was

specified when the drag image was created. This routine calls

GetDragMask ()
automatically.

SEE ALSO

GetDragInfo ()

1.70 GetDraginfo()

NAME
GetDragInfo - create a DraglInfo structure
SYNOPSIS
GetDragInfo (window, rastport, width, height, need_gels)
AQ Al DO D1 D2

DragInfo xGetDragInfo (struct Window %, struct RastPort =x,
long, long, long);

FUNCTION
Creates a DragInfo structure that is used to implement drag and drop.
Drags are inherently attached to a particular RastPort (usually either

DOpusSDK 60/190

a screen’s or a window’s). The drag system is implemented using BOBs,
which require a GelsInfo structure to be attached to the destination
RastPort. This routine can do this for you if you desire.

INPUTS
window — Window to attach BOB to (or NULL if rastport is supplied)
rastport - RastPort to attach BOB to (if not a window)
width - width of drag image
height - height of drag image
need_gels - set to TRUE if you would like this routine to allocate
and initialise a GelsInfo automatically

RESULT
If successful, a DragInfo structure is returned. Nothing is displayed
on—-screen; you must create the image and display it using the other
library calls. Once you have the DragInfo structure, you can
initialise the ’flags’ field as described in the introduction.

SEE ALSO

FreeDragInfo ()

1.71 GetDragMask()

NAME
GetDragMask - build mask for drag image

SYNOPSIS
GetDragMask (drag)
A0

void GetDragMask (DragInfo «x);

FUNCTION
Once you have created the image you want to drag, you must call
this function. This builds the shadow mask used to drag the image,
and is necessary for the image to be displayed correctly.

INPUTS
drag - DragInfo structure to build mask for

SEE ALSO

GetDragInfo ()

1.72 HideDraglimage()

NAME
HideDragImage - remove a drag image from the display

DOpusSDK 61/190

SYNOPSIS
HideDragImage (drag)
AQ
void HideDragImage (DragInfo x);

FUNCTION
This routine removes a visible drag image from the display.

INPUTS
drag — DragInfo structure

SEE ALSO

ShowDragImage ()

1.73 ShowDragimage()

NAME
ShowDragImage - display a drag image

SYNOPSIS
ShowDragImage (drag, x, Vy)
A0 DO D1

void ShowDragImage (DragInfo *, long, long);

FUNCTION
This routine displays a drag image at a given location. The image is
displayed in the RastPort that was supplied to the

GetDragInfo ()
call.

If the image was not already displayed, it is added to the display.
If it was, it is removed from its current position and redisplayed in
the new location. This is the main call used to move an image around
the screen.

INPUTS
drag - DragInfo structure to display
X — X position in rastport

y — y position in rastport
SEE ALSO
GetDraglInfo ()

4

HideDragImage ()

1.74 StampDragimage()

DOpusSDK 62/190

NAME
StampDragImage - stamp drag image onto the screen
SYNOPSIS
StampDragImage (drag, x, V)
A0 DO D1

void StampDraglImage (DragInfo *, long, long);

FUNCTION
This routine stamps the drag image onto the bitmap at the given
location. Using this function would allow you to "paint" with the
drag image.

INPUTS
drag — DragInfo structure
X — X position to stamp image at
y — y position to stamp image at

RESULT
The image is drawn into the RastPort that was supplied in the

GetDragInfo ()
call.

SEE ALSO

GetDragInfo ()

4

ShowDragImage ()

1.75 Edit Hook

Edit Hook

FreeEditHook ()
GetEditHook ()

GetSecureString ()
PURPOSE

The dopusb5.library provides an edit hook which you can attach to string
gadgets, to take advantage of some additional features. The features
provided by the edit hook include

— Enhanced cursor movement using alt and shift

- History using up/down cursor

- Clipboard support (copy, cut and paste)

- Optional filtering of path characters

— Secure option where string is not displayed

- Return automatically activates the next string gadget

DOpusSDK 63 /190

- Key press notification

To use the edit hook in your gadgets, you must obtain a Hook structure
with the
GetEditHook ()
function. Once you have finished with it, you
must free this with
FreeEditHook ()

1.76 FreeEditHook()

NAME
FreeEditHook - free a Hook created with
GetEditHook ()
SYNOPSTIS
FreeEditHook (hook)
AQ

void FreeEditHook (struct Hook =«*);

FUNCTION
This routine frees a Hook that you obtained via a call to

GetEditHook ()
INPUTS
hook - hook to free
SEE ALSO

GetEditHook ()

1.77 GetEditHook()

NAME
GetEditHook - get a Hook pointer to access the edit hook

SYNOPSIS
GetEditHook (type, flags, tags)
DO D1 AQ

struct Hook xGetEditHook (ULONG, ULONG, struct Tagltem x*);
struct Hook xGetEditHookTags (ULONG, ULONG, Tag, ...);
FUNCTION

This routine returns a Hook structure that you can use to give
the additional capabilities to your string gadgets.

DOpusSDK 64 /190

INPUTS
type - type of Hook (only HOOKTYPE_STANDARD is wvalid so far)
flags - a combination of the following flags

EDITF_NO_SELECT_NEXT - stops the return key from
automatically activating the next (or previous, with shift)
string gadget.

EDITF_PATH_FILTER - filters path characters out of the
string (/ and :)

EDITF_SECURE - secure password field, doesn’t display the
characters that are typed. If this flag is specified, the
gadget’s StringInfo->MaxChars value must be twice what

it would ordinarily be. The gadget’s StringInfo->Buffer
must be this size plus an additional two bytes, eg
(max_len=*2)+2.

tags - the following tags are supported by the edit hook

EH History - supplies a pointer to an Att_List structure
which contains the history list for this gadget. Each entry
in the list is the name of a node, with the most recent node
at the end of the list. The Att_List should be created using
Semaphore locking.

EH_ChangeSigTask - allows you to specify a task that is to be
signalled whenever the contents of the string gadget are
changed by the user. This allows you to have a display
dynamically updated as the user types.

EH_ChangeSigBit - the signal bit used to signal your task.
This is the bit number, not a mask.

RESULT
Returns a pointer to a Hook structure which you can use for your
gadget. It is not a good idea to share hooks between gadgets
(although unless you are using the EH_History facility it should
not really be a problem).

SEE ALSO

FreeEditHook ()

4

GetSecureString ()

14

Att_NewList ()

1.78 GetSecureString()

NAME
GetSecureString - retrieve the real string from a secure field

DOpusSDK 65/190

SYNOPSIS

GetSecureString (gadget)
\0)

char *GetSecureString(struct Gadget x);

FUNCTION
The secure feature of the edit hook is implemented using a buffer for
the gadget that is twice as large plus 2 bytes as it would
ordinarily be. This is because the first half of the buffer is filled
with * characters as the user types. The real text is stored in the

second half of the buffer.

INPUTS
gadget - secure string gadget

RESULT
Returns a pointer to the real text for the gadget. The text is
properly null-terminated.

SEE ALSO

GetEditHook ()

1.79 GUI_Routines

GUI Routines

ActivateStrGad()
AddScrollBars ()
BOOPSIFree ()
DisposeBitMap ()
DrawBox ()
DrawFieldBox ()
FindBOOPSIGadget ()
GetPalette32 ()
LoadPalette32 ()
NewBitMap ()
ScreenInfo ()
FindPubScreen ()

SetBusyPointer ()

DOpusSDK 66 /190

1.80 ActivateStrGad()

NAME
ActivateStrGad - Activate a string gadget.

SYNOPSIS
ActivateStrGad (gadget, window)
A0 Al

vold ActivateStrGad(struct Gadget =, struct Window x);

FUNCTION
This function activates a string gadget in a window. The difference
between this and the standard ActivateGadget () call is that the
cursor will be positioned at the end of the string.

INPUTS
gadget - string gadget you wish to activate

window - window the gadget is in

SEE ALSO
intuition.library/ActivateGadget ()

1.81 AddScroliBars()

NAME
AddScrollBars — Add BOOPSI scrollers to a window

SYNOPSIS
AddScrollBars (window, list, drawinfo, flags)
AQ Al A2 DO

struct Gadget xAddScrollBars(struct Window =%, struct List «x,
struct DrawInfo %, short);

FUNCTION
This function adds BOOPSI scrollers (proportional gadget and two
arrows) to a window. It can add scrollers either horizontally,
vertically or both.

INPUTS
window - window to add scrollers to. The window must have a border
for the side(s) you wish to add scrollers to. For example, if you
add a horizontal scroller, the window must have a bottom border
(ie the WFLG_SIZEBBOTTOM flag is set).

list - this must point to an initialise List structure. The
gadgets created by this routine will be added to this List, which
can later be freed by

DOpusSDK 67 /190

BOOPSIFree ()

drawinfo - pointer to the screen’s DrawInfo structure

flags - the type of scrollers you want

SCROLL_VERT - vertical scroller
SCROLL_HORIZ — horizontal scroller
SCROLL_NOIDCMP - this flag signified that the scrollers

are only to return the normal
IDCMP_GADGETUP, IDCMP_GADGETDOWN and
IDCMP_MOUSEMOVE messages. If not
specified, the gadgets also generate
IDCMP_IDCMPUPDATE messages.

RESULT
This routine returns 0 if it fails. If it succeeds, it returns a
pointer to the last gadget created. This pointer is not particularly
useful; it just signifies success. To actually add the gadgets to the
window, call AddGList () on the first gadget in the supplied List
structure, and then RefreshGList ().

The gadgets created by this function have pre-defined IDs. If you
use this routine you should make sure that your own gadgets do not
conflict with these IDs. See the "dopus/gui.h" file for the ID values.

SEE ALSO

FindBOOPSIGadget ()

14

BOOPSIFree ()

14
intuition.library/GetScreenDrawInfo (), intuition.library/AddGList (),
intuition.library/RefreshGList ()

1.82 BOOPSIFree()

NAME
BOOPSIFree - free a list of BOOPSI gadgets

SYNOPSIS
BOOPSIFree (list)
AO0

void BOOPSIFree (struct List «);
FUNCTION
This routine iterates through a list of BOOPSI gadgets, calling

DisposeObject on each one in turn. It then reinitialises the list.

INPUTS
list - List of gadgets to free

DOpusSDK 68 /190

SEE ALSO

AddScrollBars ()
, intuition.library/DisposeObject ()

1.83 DisposeBitMap()

NAME
DisposeBitMap - free a bitmap created with
NewBitMap ()
SYNOPSIS
DisposeBitMap (bm)
AQ

void DisposeBitMap (struct BitMap x*);

FUNCTION
This routine frees a bitmap and the associated bitplanes that was
allocated with the
NewBitMap ()
function. Under 0S39 it simply passes
the bitmap through to the graphics.library FreeBitMap () call. Under
0S37 it frees the bitmap and bitplanes manually.

INPUTS
bm - BitMap to free

RESULT
The BitMap is freed.

SEE ALSO

NewBitMap ()
, graphics.library/FreeBitMap ()

1.84 DrawBox()

NAME

DrawBox — draw a 3D box
SYNOPSIS

DrawBox (rp, rect, info, recessed)
A0 Al A2 DO

void DrawBox (struct RastPort =x, struct Rectangle =x,
struct DrawInfo %, BOOL);

FUNCTION
This routine draws a single-pixel 3D box, using the current pen

DOpusSDK 69/190

settings in the DrawInfo you supply.

INPUTS
rp - RastPort to draw into
rect - Rectangle to draw
info - Screen’s DrawInfo
recessed - set to TRUE if you want a recessed box

SEE ALSO
intuition.library/GetScreenDrawInfo ()

1.85 DrawFieldBox()

NAME
DrawFieldBox — draw a 3D field box

SYNOPSIS
DrawFieldBox (rp, rect, info)
AQ Al A2

void DrawFieldBox (struct RastPort =, struct Rectangle =,
struct DrawInfo x);

FUNCTION
Draws a 3D field box (eg the path field in DOpus listers).

INPUTS
rp — RastPort to draw into
rect - Rectangle to draw
info - Screen’s DrawInfo

SEE ALSO
intuition.library/GetScreenDrawInfo ()

1.86 FindBOOPSIGadget()

NAME
FindBOOPSIGadget - find a gadget by ID in a BOOPSI list

SYNOPSIS
FindBOOPSIGadget (1list, id)
A0 DO

struct Gadget *FindBOOPSIGadget (struct List =%, USHORT);

FUNCTION
This routine iterates through the supplied list of gadgets looking
for one with the supplied ID. If found, it returns it.
This routine can be used to find a specific gadget in the List
created by
AddScrollBars ()

DOpusSDK

70/190

€9,

vert_scroll=FindBOOPSIGadget (&1list, GAD_VERT_SCROLLER) ;
INPUTS
list - List of BOOPSI gadgets
id - ID to look for

RESULT
If the gadget is found, it is returned, otherwise NULL.

SEE ALSO

AddScrollBars ()

1.87 GetPalette32()

NAME
GetPalette32 - get a 32 bit palette from a ViewPort

SYNOPSIS
GetPalette32 (vp, palette, count, first)
AQ Al DO D1

void GetPalette32 (struct ViewPort =, ULONG, USHORT, short);

FUNCTION
This routine copies the palette from the supplied ViewPort into
the supplied buffer. Under 0S39 it is identical in operation to
the graphics.library GetRGB32 () function. The advantage of using
this function is that it also works under 0S37. Under 0S37, the
4 bit colour values are extended to full 32 bit.

INPUTS
vp — ViewPort to load colours from
palette - array of ULONGs to store palette (3 per pen)
count - number of pen values to copy
first - first pen to copy

RESULT
The palette values are stored in the supplied array.

SEE ALSO

LoadPalette32 ()
, graphics.library/GetRGB32 ()

1.88 LoadPalette32()

DOpusSDK 71/190

NAME
LoadPalette32 - load a 32 bit palette in a ViewPort

SYNOPSIS
LoadPalette32 (vp, palette)
\0) Al

void LoadPalette32 (struct ViewPort =, ULONG x);

FUNCTION
This routine loads a 32 bit palette into a ViewPort. It is
identical in operation to the graphics.library LoadRGB32 ()
function, except that it also works under 0S37.

INPUTS
vp — ViewPort to load palette
palette - Palette to load (in LoadRGB32 () format)

RESULT
The palette is loaded.

SEE ALSO

GetPalette32
, graphics.library/LoadRGB32 ()

1.89 NewBitMap()

NAME
NewBitMap - allocate a bitmap and bitplanes

SYNOPSIS
NewBitMap (sizex, sizey, depth, flags, friend)
DO D1 D2 D3 AQ

struct BitMap *NewBitMap (ULONG, ULONG, ULONG, ULONG, struct BitMap x);

FUNCTION
This routine allocates a BitMap and the bitplanes for it. It is
identical in operation to the graphics.library AllocBitMap () call,
except that it works under 0S37. Under 0S37 the bitmap and planes
are allocated manually, and the friend parameter is ignored.

Under 0S39, if a friend bitmap is supplied and that friend is not

a standard BitMap (ie BMF_STANDARD is not set), the new bitmap will

be allocated with the BMF_MINPLANES flag. This makes CyberGfx allocate
a fast chunky bitmap.

INPUTS
sizex - width of bitmap
sizey - height of bitmap
depth - number of bitplanes
flags - bitmap flags

DOpusSDK

72/190

friend - friend bitmap

RESULT
Returns the BitMap if successful, otherwise NULL.

SEE ALSO

DisposeBitMap ()
, graphics.library/AllocBitMap ()

1.90 Screenlinfo()

NAME
ScreenInfo - return information about a screen
SYNOPSIS
ScreenInfo (screen)
AQ

ULONG ScreenInfo(struct Screen x*);

FUNCTION

This routine is designed to return simple information about a screen.

INPUTS
screen - Screen to obtain information about.

RESULT
Currently, the only flag defined for the result is SCRI_LORES, which
indicates that the screen is low resolution, or does not have a 1:1
pixel ratio.

1.91 FindPubScreen()

NAME
FindPubScreen - find (and lock) a public screen
SYNOPSIS
FindPubScreen (screen, lock)
A0 DO

struct PubScreenNode *FindPubScreen (struct Screen x, BOOL);

FUNCTION
This function takes the address of a Screen, and searches for it in
the system Public Screen list. If it is found, the address of the
PubScreenNode 1is returned.

INPUTS

DOpusSDK 73/190

screen — Screen to search for
lock - Set to TRUE if you want the screen to be locked on return

RESULT
Returns the PubScreenNode of the screen if found, otherwise NULL.
If ’"lock’ is set to TRUE, the public screen will be locked for you
and you should call UnlockPubScreen() on it when you are finished.

SEE ALSO
intuition.library/LockPubScreen ()

1.92 SetBusyPointer()

NAME
SetBusyPointer - set busy pointer in a window
SYNOPSIS
SetBusyPointer (window)
AQ

void SetBusyPointer (struct Window x);

FUNCTION
This function sets the mouse pointer in the supplied window to
the busy pointer. Under 0S39 it uses the system-defined busy
pointer. Under 0S37 it uses a standard watch image.

INPUTS
window - Window to set busy pointer for

RESULT
The busy pointer is set in the supplied window. You should call

ClearPointer () when you have finished.

SEE ALSO
intuition.library/SetWindowPointer, intuition.library/ClearPointer

1.93 FreeCachedDiskObiject()

NAME
FreeCachedDiskObject - free a cached icon

SYNOPSIS
FreeCachedDiskObject (icon)
AO

void FreeCachedDiskObject (struct DiskObject x);

FUNCTION
This function frees a cached icon obtained via a call to

DOpusSDK 74/190

GetCachedDiskObject ()
or a similar function.

INPUTS
icon - icon to free

RESULT
The usage count of the cached icon is decremented. When the usage
count reaches zero, the icon is flushed from the cache.

NOTES
You can pass a normal, uncached icon to this routine, in which case
it just passes the call through to FreeDiskObiject () .

SEE ALSO

GetCachedDiskObject ()
, lcon.library/FreeDiskObject ()

1.94 GetCachedDefDiskObject()

NAME
GetCachedDefDiskObject - GetDefDiskObject () with image caching

SYNOPSIS
GetCachedDefDiskObject (type)
DO

struct DiskObject *GetCachedDefDiskObject (long);

FUNCTION
This routine returns one of a number of default icons. The main
advantage this has over the icon.library GetDefDiskObject () call is
that the image data of the icons is cached. This can save a huge
amount of chip memory if multiple copies of the same icon are
required (compare the chip memory used when you open a large drawer
in Workbench with the same drawer in Opus) .

INPUTS
type - type of icon to create

RESULT
Returns a pointer to the icon or NULL for failure.

SEE ALSO

FreeCachedDiskObject ()
, licon.library/GetDefDiskObject ()

1.95 GetCachedDiskObject()

DOpusSDK 75/190

NAME
GetCachedDiskObject - get an icon from disk with image caching

SYNOPSIS
GetCachedDiskObject (name)
0]

struct DiskObject *GetCachedDiskObject (char «);

FUNCTION
This routine loads an icon from disk, and caches the image data. If
the same icon is loaded again, the cached image data is used instead
of loading a new copy. This can save valuable chip memory, especially as
the cache is system wide.

INPUTS
name - name of icon to load (without the .info suffix)

RESULT
Returns a pointer to the icon if successful, otherwise NULL.

NOTES
You should not use this routine if you want to modify the image data.
Only the image data is cached, however, so you can modify any of the
other fields of the icon.

Also, this routine is slightly slower than a normal call to
GetDiskObject (), and while the icon is loading requires slightly more
memory (the whole icon is loaded, then if the image is found in the
cache the new copy is discarded).

SEE ALSO

FreeCachedDiskObject ()
, icon.library/GetDiskObject

1.96 GetCachedDiskObjectNew()

NAME
GetCachedDiskObjectNew - get icon with default fallback

SYNOPSIS
GetCachedDiskObjectNew (name)
AQ

struct DiskObject *GetCachedDiskObjectNew (char x);

FUNCTION
This routine attempts to load the icon in the same way as the

GetCachedDiskObject ()
routine. If no icon is found for the supplied
filename, the object in question is examined, and a default icon is

DOpusSDK 76 /190

returned. This routine will return WBPROJECT, WBDRAWER, WBTOOL or
WBDISK icons, depending on the name passed in.

INPUTS
name - name of object to load icon for (no .info suffix)

RESULT
Returns a pointer to the icon if successful, otherwise NULL.

SEE ALSO

GetCachedDiskObject ()

4

FreeCachedDiskObject ()

4

icon.library/GetDiskObjectNew ()

1.97 GetlconFlags()

NAME
GetIconFlags - get special Opus icon flags

SYNOPSIS
GetIconFlags (icon)
AQ

ULONG GetIconFlags (struct DiskObject «x);

FUNCTION
Opus stores additional information in icons to control some of the
enhanced features. This routine returns the special flags set for the
icon you supply.

INPUTS
icon - icon to retrieve flags for

RESULT
Returns ULONG containing the flags set. Current flags in use are

ICONF_POSITION_OK - an Opus-specific position is available
ICONF_NO_BORDER — icon has no border
ICONF_NO_LABEL — icon has no label
SEE ALSO
SetIconFlags ()

7
GetIconPosition ()

1.98 GetlconPosition()

DOpusSDK 77 /190

NAME
GetIconPosition - get Opus-specific icon position
SYNOPSIS
GetIconPosition(icon, xptr, yptr)
AQ Al A2

void GetIconPosition (struct DiskObject x, short x, short x);

FUNCTION
Opus keeps a separate record from Workbench of icon positions. This
function allows you to retrieve the Opus-specific position of the
icon (the normal Workbench position is in do_CurrentX/do_CurrentY) .

INPUTS
icon - icon to retrieve position for
xptr - pointer to short to receive x position
yptr - pointer to short to receive y position

RESULT
Stores the position in the two variables provided.

NOTES
You should call
GetIconFlags ()
first to check that an Opus-specific
position is available for this icon.

SEE ALSO
SetIconPosition ()

4

GetIconFlags()

1.99 SetlconFlags()

NAME
SetIconFlags - set Opus flags in an icon
SYNOPSIS
SetIconFlags(icon, flags);
AQ DO

void SetIconFlags (struct DiskObject =x, ULONG) ;

FUNCTION
This routine allows you to set the special Opus flags in an icon.

INPUTS
icon - icon to set flags for
flags - new flags for the icon

RESULT

DOpusSDK 78/190

The flags in the icon are set. See
GetIconFlags ()
for a description
of the available flags.
SEE ALSO

GetIconFlags ()

1.100 SetlconPosition()

NAME
SetIconPosition - set Opus position for an icon
SYNOPSIS
SetIconPosition(icon, x, y)
A0 DO D1

void SetIconPosition(struct DiskObject =+, short, short);

FUNCTION
This routine allows you to set the Opus-specific position for an
icon.

INPUTS
icon - icon to set position for
X — new x position of icon
y — new y position of icon

RESULT
The position is set in the icon.

NOTES
You should also call
SetIconFlags ()
on the icon to set the
ICONF_POSITION_OK flag.

SEE ALSO
GetIconPosition ()

4

SetIconFlags ()

1.101 CopyFilelcon()

NAME
CopyFileIcon - copy icon from one file to another

DOpusSDK 79/190

SYNOPSIS
CopyFilelIcon (source, dest)
A0 Al

void CopyFileIcon (char x, char x);

FUNCTION
This routine copies the icon from the specified source object to a
new icon for the destination object.

INPUTS
source — source icon (without .info)
dest - destination icon (without .info)
RESULT

The icon is copied. If an icon already exists for the source, it is
NOT overwritten. No error code is available for this function.

NOTES
If the specified source file has no icon, a default icon is created.

1.102 IFF _Routines

IFF Routines

IFFChunkID ()
IFFChunkRemain ()
IFFChunkSize ()
IFFClose ()
IFFFailure ()
IFFGetForm ()
IFFNextChunk ()
IFFOpen ()
IFFPopChunk ()
IFFPushChunk ()
IFFReadChunkBytes ()
IFFWriteChunkBytes ()

IFFWriteChunk ()

DOpusSDK 80/190

1.103 IFFChunkID()

NAME
IFFChunkID - get current chunk ID

SYNOPSIS
IFFChunkID (handle)
A0

ULONG IFFChunkID (APTR) ;

FUNCTION
Returns the four-byte ID of the current chunk.

INPUTS
handle - IFF handle

RESULT
Returns chunk ID.

SEE ALSO
IFFOpen ()

, IFFGetFORM(),
IFFNextChunk ()

1.104 IFFChunkRemain()

NAME
IFFChunkRemain - return size of remaining data
SYNOPSIS
IFFChunkRemain (handle)
\0)

long IFFChunkRemain (APTR) ;

FUNCTION
Returns the amout of data left to be read in the current chunk.

INPUTS
handle - IFF handle

RESULT
Returns size of data or 0 i1f no data left.

SEE ALSO

IFFOpen ()

4

IFFNextChunk ()

14

IFFChunkSize ()

DOpusSDK 81/190

4

IFFReadChunkBytes ()

1.105 IFFChunkSize()

NAME
IFFChunkSize - size of current chunk
SYNOPSIS
IFFChunkSize (handle)
A0

long IFFChunkSize (APTR) ;

FUNCTION
Obtain the amount of data in the current chunk.

INPUTS
handle - IFF handle

RESULT
Returns the total number of bytes of data in the current chunk
(excluding the chunk header). If there is no valid current chunk,

returns -1.
SEE ALSO

IFFOpen ()

4

IFFNextChunk ()

4

IFFChunkRemain ()

4

IFFReadChunkBytes ()

1.106 IFFClose()

NAME
IFFClose - close an IFF file

SYNOPSIS
IFFClose (handle)
A0

void IFFClose (APTR);

FUNCTION
Closes an IFF file.

INPUTS

DOpusSDK 82/190

handle - file to close

RESULT
The file is closed.

SEE ALSO

IFFOpen ()

1.107 IFFFailure()

NAME
IFFFailure - indicate failure to "safe" file routine
SYNOPSIS
IFFFailure (handle)
A0

void IFFFailure (APTR)

FUNCTION

The

IFFOpen ()

routine has a "safe" mode, where an existing IFF file
is renamed rather than being over-written. If you create a file in
this safe mode, and then subsequent IFF operations fail (with the
result that the whole operation fails), you should call this routine.
Then, when you call

IFFClose ()

, the pre-existing file will be
renamed back to what it was instead of being deleted.

INPUTS
handle - IFF handle

RESULT
The ’failure’ flag is set, and the "safe" file will be restored.

SEE ALSO
IFFOpen ()

14

IFFClose ()

1.108 IFFGetForm()

NAME
IFFGetForm - get current FORM ID

SYNOPSIS

DOpusSDK 83/190

IFFGetForm (handle)
AQ

ULONG IFFGetForm (APTR) ;

FUNCTION
This routine returns the four-byte FORM ID of the file.

INPUTS
handle - IFF handle

RESULT
Returns the FORM ID, or 0O if no wvalid FORM.

SEE ALSO
IFFOpen ()

4

IFFChunkID ()

1.109 IFFNextChunk()

NAME
IFFNextChunk - skip to the next chunk

SYNOPSIS
IFFNextChunk (handle, chunkid)
AQ DO

ULONG IFFNextChunk (APTR, ULONG) ;

FUNCTION
This is the main work-horse of the IFF routines. This function will
scan through the IFF file from the current position looking for the
next chunk. You can optionally specify a chunk to look for.

INPUTS
handle - IFF handle
chunkid - ID of chunk to look for, or 0 for next chunk

RESULT
Returns ID of the new chunk, or 0 for error or end-of-file.

NOTES
The IFF routines do not handle LISTs, CATs or other complicated IFF
structures. This routine will handle multiple FORMs within the one
file, which allows it to read ANIMs.

SEE ALSO
IFFOpen ()

4

IFFReadChunkBytes ()

DOpusSDK 84 /190

1.110 IFFOpen()

NAME
IFFOpen - open an IFF file

SYNOPSIS
IFFOpen (name, mode, form)
A0 DO D1

APTR IFFOpen (char %, USHORT, ULONG) ;

FUNCTION
This routine opens either a disk-based file or the clipboard for
IFF reading/writing. This and the other IFF routines in the
dopus5.library are far simpler (and seem to be less buggy) than the
iffparse.library functions. These routines were specifically designed
to make the reading and writing of "normal" IFF files as easy as
possible. They use the buffered IO routines for high performance.
They do not support LISTs, CATs or other complicated IFF structures.

INPUTS
name - Filename or clipboard unit to open.
mode - Mode to open in
IFF_READ - open for reading
IFF_WRITE - open for writing
IFF_CLIP_READ - open clipboard for reading

IFF_CLIP_WRITE open clipboard for writing

This flag can be set in conjunction with IFF_WRITE
IFF_SAFE - backup existing file
form - If this is not 0, it specifies an IFF FORM. If you open
the file for reading, it will be tested against this FORM and

the open will fail if the FORM does not match. If you open
for writing, this specifies the FORM of the file to be

created.
RESULT
If successful, returns an IFF handle which you use in all subsequent
calls to the IFF routines. Returns 0 on failure, and IoErr () is set

to the reason for the failure.

NOTES
To use the clipboard, you must specify either IFF_CLIP_READ or
IFF_CLIP_WRITE. The clipboard unit you want is passed as the name
parameter. For example, to open clipboard unit 3 to write an ILBM,

handle = IFFOpen((char =)3, IFF_CLIP_WRITE, ID_ILBM);

If you specify IFF_WRITE|IFF_SAFE, and the file you are creating
already exists, it will be renamed to a temporary filename. When

DOpusSDK 85/190

IFFClose ()

is called, the temporary file will be deleted. If you
call

IFFFailure ()

because of a failure at some stage, it sets a flag
which causes the old file to be restored.

SEE ALSO

IFFClose ()

4

IFFFailure ()

1.111 IFFPopChunk()

NAME
IFFPopChunk - flush the chunk cache

SYNOPSIS
IFFPopChunk (handle)
AQ

long IFFPopChunk (APTR) ;

FUNCTION
This function flushes the current chunk write cache and writes the
chunk to disk.

INPUTS
handle - IFF handle

RESULT
The current chunk is written to disk. Returns TRUE if successful.

SEE ALSO

IFFOpen ()

4

IFFPushChunk ()

4

IFFWriteChunkBytes ()

1.112 IFFPushChunk()

NAME
IFFPushChunk - start writing a chunk

SYNOPSIS
IFFPushChunk (handle, id)

DOpusSDK 86/190

AQ DO

long IFFPushChunk (APTR, ULONG) ;

FUNCTION
This routine initialises a new chunk to be written to the file.
It is similar in concept to the PushChunk () routine in

iffparse.library, but does not support nesting of chunks. Therefore,
you should always call

IFFPopChunk ()

before you call IFFPushChunk ()
again.

INPUTS
handle - IFF handle
id - ID of chunk to write

RESULT
The chunk is initialised for writing. The usual procedure is

1. IFFPushChunk ()
2. One or more calls to
IFFWriteChunkBytes ()
3.
IFFPopChunk ()
SEE ALSO

IFFOpen ()

4

IFFWriteChunkBytes ()

14

IFFPopChunk ()

1.113 IFFReadChunkBytes()

NAME
IFFReadChunkBytes - read data from a chunk

SYNOPSIS
IFFReadChunkBytes (handle, buffer, size)
A0 Al DO

long IFFReadChunkBytes (APTR, APTR, long);

FUNCTION
This routine reads data from the current position in the current
chunk.

INPUTS
handle - IFF handle
buffer - buffer to store data
size - amount of data to read

RESULT

DOpusSDK 87/190

Returns the amount of data read or -1 for failure. Will not read
past the end of a chunk.

SEE ALSO

IFFOpen ()

4

IFFNextChunk ()

4

IFFChunkSize ()

1.114 IFFWriteChunkBytes()

NAME
IFFWriteChunkBytes - write data in a chunk

SYNOPSIS
IFFWriteChunkBytes (handle, data, size)
AQ Al DO

long IFFWriteChunkBytes (APTR, APTR, long);

FUNCTION
This routine writes data to a chunk that was initialised with
PushChunk () . The data is generally cached and not written to the disk
until PopChunk () is called, resulting in higher performance.

INPUTS
handle - IFF handle
data - data to write
size - amount of data

RESULT
Returns TRUE if successful.

SEE ALSO

IFFOpen ()

4

IFFPushChunk ()

4

IFFPopChunk ()

1.115 IFFWriteChunk()

NAME
IFFWriteChunk - write a chunk straight out

SYNOPSIS
IFFWriteChunk (handle, data, id, size)

DOpusSDK

88/190

AQ Al DO D1
long IFFWriteChunk (APTR, APTR, ULONG, ULONG) ;

FUNCTION

If you have a single structure or piece of data you wish to write

as a chunk, this routine is simpler than the PushChunk () /PopChunk ()

method.

INPUTS
handle - IFF handle
data - data to write
id - ID of chunk
size - size of data

RESULT

If successful, the chunk is written straight to the file.

FALSE on failure.
SEE ALSO
IFFOpen ()

4

IFFPushChunk ()

4

IFFPopChunk ()

4

IFFWriteChunkBytes ()

1.116 Image_Routines

Image Routines

CloseImage ()
CopyImage ()
FreeImageRemap ()
FreeRemapImage ()
GetImageAttrs ()
GetImagePalette ()
OpenImage ()
RemapImage ()

RenderImage ()

Returns

DOpusSDK 89/190

1.117 Closelmage()

NAME
CloseImage — close an image
SYNOPSIS
CloselImage (image)
AO

void CloseImage (APTR);

FUNCTION
Closes an image that was opened with
OpenImage ()
The usage count
of the image is decremented. When the count reaches 0 the image is
flushed from memory.

INPUTS
image - image to close

SEE ALSO

OpenImage ()

1.118 Copylmage()

NAME
CopyImage — copy an opened image
SYNOPSIS
CopyImage (image)
0

APTR CopyImage (APTR) ;

FUNCTION
Returns another pointer to the supplied image.

INPUTS
image - image to copy

RESULT
Returns a new pointer to the image.

SEE ALSO

OpenlImage ()

DOpusSDK 90/190

1.119 FreelmageRemap()

NAME
FreeImageRemap - free pens used to remap images
SYNOPSIS
FreeImageRemap (remap)
AQ

volid FreelImageRemap (ImageRemap *);

FUNCTION
Frees all the pens allocated with the supplied ImageRemap structure.
You should call this function after you have called
FreeRemapImage ()
or
CloseImage ()
on the individual images.

INPUTS
remap - ImageRemap structure to free

SEE ALSO

RemapImage ()

1.120 FreeRemaplimage()

NAME
FreeRemapImage - free a remapped image
SYNOPSIS
FreeRemapImage (image, remap)
AO Al

void FreeRemapImage (APTR, ImageRemap x);

FUNCTION
This function frees the remapped bitplanes allocated for an image
via the
RemapImage ()
call.

INPUTS
image - image to free remap bitplanes for
remap - ImageRemap structure

RESULT
The remapped bitplanes are freed. This routine does not free any pens
that were allocated - these are released when you call
FreeImageRemap ()

Note that the image itself is not freed, only the remapped version of

DOpusSDK 91/190

it.
SEE ALSO
RemapImage ()

14
FreeImageRemap ()

1.121 GetimageAttrs()

NAME
GetImageAttrs - get information about an image
SYNOPSIS
GetImageAttrs (image, tags)
AQ Al

void GetImageAttrs (APTR, struct Tagltem x);

FUNCTION
This routine allows you to retrieve information about an image opened
with

OpenImage ()
INPUTS
image - image to investigate
tags - control tags. The following tags are valid
IM_Width - width of image
IM_Height — height of image
IM Depth — number of bitplanes
IM_State - 1 if the image has two frames, 0 if not
RESULT

The requested information is stored in the ti_Data field of each of
the Tags passed in.

SEE ALSO

OpenImage ()

1.122 GetimagePalette()

NAME
GetImagePalette - get pointer to image palette

SYNOPSIS
GetImagePalette (image)
AQ

DOpusSDK 92/190

ULONG xGetImagePalette (APTR) ;

FUNCTION
This allows you to retrieve a pointer to the palette of the image.

INPUTS
image - image you want the palette for

RESULT
If the image has associated palette information (eg a brush), a
pointer to a longword palette table is returned. This palette table
is in LoadRGB32 () format. If the image has no associated palette,
this routine returns NULL.

SEE ALSO

OpenlImage ()
, graphics.library/LoadRGBR32 ()

1.123 Openimage()

NAME
OpenImage - read an image off disk
SYNOPSIS
OpenlImage (name, info)
A0 Al

APTR OpenlImage (char x, OpenImageInfo x);

FUNCTION
The primary purpose of this function is to read an image from a file
on disk. This routine supports ILBM brushes and pictures, animbrushes
and Amiga icons.

This routine is also used to create an image handle to bitmap data
that you supply. This image handle can then be used with the image
remapping functions.

This function caches images based on their full pathname. If two
copies of the same file are loaded, the first copy will be used to
save memory.

INPUTS
name - name of image to load, or NULL if you are supplying a bitmap
info - if ’'name’ is NULL, this must point to an initialised

OpenImageInfo structure:

oi_TImageData - must point to the image data. This data
does not need to be in chip memory.

oi_Palette - must point to a palette for the image, in
LoadRGB32 () format.

DOpusSDK

93/190

0oi_Width - width of the image
oi_Height - height of the image
oi_Depth - number of image bitplanes
RESULT
Returns an image handle if it succeeds. This handle is used in
subsequent calls to the image routines. This routine returns NULL if
it fails.

SEE ALSO

CloseImage ()
, graphics.library/LoadRGB32 ()

1.124 Remaplmage()

NAME
RemapImage - remap an image
SYNOPSIS
RemapImage (image, screen, remap)
AQ Al A2

BOOL RemaplImage (APTR, struct Screen *, ImageRemap x*);

FUNCTION

This function remaps an image to the colours of the specified screen.

It will allocate pens from the screen if necessary (and possible).

INPUTS
image - image to remap (from
OpenImage ()
)
remap - ImageRemap structure. This structure must be initialised for
the first call to RemapImage (). All fields must be set to
NULL.

For the first and subsequent calls to this function, the
ir Flags field can be set with the following values

IRF_REMAP_COLO - remap colour 0 in the image
IRF_PRECISION_EXACT - use best precision when pen matching
IRF_PRECISION_ICON - lower precision

IRF_PRECISION_GUI - lowest precision

You can use the one ImageRemap structure to remap multiple
images, but only for the one screen. The ir_Flags field can be
changed for every call to this function, but none of the

other fields may be changed.

RESULT

DOpusSDK 94 /190

This image returns TRUE if it was able to remap the image. Once the
image has been remapped, any call to
RenderImage ()
to display it will
show the remapped version. Call
FreeRemapImage ()
to free the remap
and return to the original image.

SEE ALSO

OpenImage ()

r
RenderImage ()

4

FreeRemapImage ()

14
FreeImageRemap ()

1.125 Renderimage()

NAME
RenderImage - display an image
SYNOPSIS
RenderImage (rp, image, left, top, tags)
AQ Al DO D1 A2

short RenderImage (struct RastPort %, APTR, USHORT, USHORT,
struct Tagltem x);

FUNCTION
This routine is used to render an image to a RastPort.

INPUTS
rp - RastPort to render to
image - image to render
left - x position to render to
top - vy position to render to
tags - control tags. The following tags are available

IM_State - 0 or 1 (default 0)

This tag controls which frame of the image is shown.
Defaults to frame 0, but for two-frame images (eg icons or
animbrushes) you can set this to 1.

IM_Rectangle - struct Rectangle x (default not supplied)

This specifies a rectangle to display the image within. If
you supply this tag, the image will be centered within this
area. Use of this tag overrides the ’left’ and ’top’
parameters.

DOpusSDK 95/190

IM_ClipBoundary - integer (default 2)

This is used with the IM_Rectangle tag. If IM_Rectangle is
specified, the image is clipped to the boundaries of the
rectangle. The default operation is to leave a two pixel
margin around the image (to allow room for a border). Using
the IM_ClipBoundary tag you can adjust this margin (set to O
if you want no margin).

IM_Mask - TRUE or FALSE (default FALSE)

If you set this tag to TRUE, the image will be masked when
it is rendered. This has the effect of making colour O
transparent, and the existing background will show through
the image.

IM_FErase - integer (default not supplied)

This tag allows you to specify a pen value that is used to
erase the background before the image is rendered. By
default the background is not cleared.

IM_NoDrawInvalid (default not supplied)

If you specify this tag, and also specify 1 for IM_State,
then the call to RenderImage() will fail if the image has
no secondary image. If this tag is not specified and you
try to draw the second frame of an image that doesn’t have
one, it falls back to drawing the first frame.

IM_NoIconRemap - TRUE or FALSE (default FALSE)

By default, an icon that is drawn with RenderImage() is
"remapped". This is not a true colour remapping, but the
third bitplane of an eight colour icon is shifted to the
top bitplane of the display. This makes most normal eight
colour icons work properly on screens of more than eight
colours. However, it can cause problems with NewIcons

icons. Specify TRUE with this tag to disable this remapping.

RESULT
The image is rendered. If you specified IM NoDrawlInvalid and you
tried to draw an image that didn’t exist, this routine returns FALSE.
Otherwise it returns TRUE.

NOTES
If the image has been remapped with
RemapImage ()
, the remapped image
will be automatically drawn by this routine.

SEE ALSO
OpenImage ()

4

RemapImage ()

DOpusSDK 96/190

1.126 IPC_Routines

IPC Routines

IPC_Command ()
IPC_FindProc ()
IPC_Flush()
IPC_Free()
IPC_Launch ()
IPC_ListCommand ()
IPC_ProcStartup ()

IPC_Reply ()

1.127 IPC_Command()

NAME
IPC_Command - send a command to an IPC process

SYNOPSIS
IPC_Command (ipc, command, flags, data, data_free, reply)
AQ DO D1 Al A2 A3

ULONG IPC_Command (IPCData *, ULONG, ULONG, APTR, APTR,
struct MsgPort «);

FUNCTION
Sends a command to an IPC process. Can be used from a non-IPC

process but this is not recommended.

INPUTS
ipc - IPC process to send command to

command - command code (application-specific)

flags - command flags (application-specific)

data - command data (application-specific)

data_free - additional data. The data specified here will be

automatically freed with FreeVec () when the message
is replied to, so you MUST allocate it with

DOpusSDK 97 /190

AllocVec() .

reply - reply port. You can either specify a message port for
the reply, or use one of these special values

REPLY_NO_PORT — use default port for reply
REPLY_NO_PORT_IPC - specify this if the message is sent
from a non-IPC process

If you don’t want a reply to this message (ie you want it
to be sent asynchronously), specify NULL for this value.

RESULT
The command will be sent to the specified process. If the command
was not sent asynchronously, the destination process’ result code
is returned.

NOTES
There are several reserved command codes. You are free to use these
for your own applications, or use your own codes. These are listed
in <dopus/ipc.h>.

SEE ALSO
IPC_Launch ()

14

IPC_Reply ()

1.128 IPC_FindProc()

NAME
IPC_FindProc - find an IPC process by name
SYNOPSIS
IPC_FindProc(list, name, activate, data)
AQ Al DO D1

IPCData *IPC_FindProc (struct ListLock %, char =, BOOL, ULONG) ;

FUNCTION
This routine searches the supplied list for a named IPC process.
Optionally, it can send this process an IPC_ACTIVATE message with
user-specified data.

INPUTS
list - ListLock to search. This routine locks this list in shared
mode, and will block until the list is available.

name - name to search for (case sensitive)

activate - specify TRUE if you want an IPC_ACTIVATE message to be sent
automatically.

data - if "activate’ is TRUE, this value will be passed in the data

DOpusSDK 98/190
field of the IPC_ACTIVATE command.
RESULT
If the process is found, its IPCData pointer is returned. To ensure
that this pointer remains valid you should Forbid(), or lock the

list yourself (in shared mode!).
SEE ALSO
IPC_Launch ()

4

IPC_Command ()

1.129 IPC_Flush()

NAME
IPC_Flush - flush an IPC command port

SYNOPSIS
IPC_Flush (ipc)
AQ
void IPC_Flush (IPCData «);
FUNCTION
This routine searches the command port for any messages and replies

to them with an IPC_ABORT.

INPUTS
ipc - IPCData of the process

RESULT
The port is emptied.

NOTES
In practice you rarely need this function.

SEE ALSO

IPC_Free()

1.130 IPC_Free()

NAME
IPC_Free - free an IPC process

SYNOPSIS
IPC_Free (ipc)
AQ

DOpusSDK 99/190

void IPC_Free (IPCData «);

FUNCTION
This routine frees all the memory associated with an IPC process
entry. It does NOT remove the process itself from the system. It is
designed to be called by a process on itself, as the last step before
exiting.

INPUTS
ipc - IPCData to free

RESULT
The IPCData handle is freed. If the process was a member of a list,
it is removed from that list. Any commands still in its message port
are replied to with IPC_ABORT.

SEE ALSO

IPC_Launch ()

1.131 IPC_Launch()

NAME
IPC_Launch - launch a new process
SYNOPSIS
IPC_Launch(list, ipcptr, name, entry, stack, data, doslib)
AQ Al A2 DO D1 D2 A3

long IPC_Launch (struct ListLock =%, IPCData =*=*, char =x,
ULONG, ULONG, ULONG, struct Library =*);

FUNCTION
The IPC routines in the dopus5.library provide an easy and efficient
way to implement multi-threading in your application. Using the
IPC_Launch functions creates an IPCData, which is a handle to a
process. Using this handle you can easily send command between
multiple processes.

The important fields in the IPCData structure are as follows

proc — pointer to the Process structure
command_port — port to listen to for commands
userdata — user-specified data

memory - a memory pool you can use

All Opus 5 modules are launched as IPC processes, and are passed

a pointer to their IPCData structures. They are also passed the
address of the main Directory Opus IPCData structure, which allows
them to send direct commands to Opus.

If you are writing a standalone application and wish to use the IPC
routines, your main thread will need to create an IPCData structure
manually. It must be initialised as follows

DOpusSDK 100/ 190

proc - pointer to your main Process

command_port - pointer to a message port

list — NULL

reply_port — pointer to a DIFFERENT message port

IPC processes can automatically be added to a list. There is no
need for you to keep track of a process once it has been launched,
except that your main process can’t exit while a child is still
running (as the code would be freed).

INPUTS
list - pointer to an initialise ListLock structure if you want this
process to be automatically added to a list (can be NULL).

ipcptr - pointer to a pointer to IPCData. If the process is launched
successfully, the new IPCData handle will be stored in this
address (can be NULL) .

name - name for the new process.
entry - pointer to code for the new process.

stack - stack size for the new process. You can also set the
IPCF_GETPATH flag in the stack variable, to have the new
process automatically inherit the system path list.

data - data that is automatically passed to the new process
doslib - you must supply a pointer to the DOS library

RESULT

This routine returns 0 if the child process failed to launch.
However, if the child process was actually launched, but failed
to initialise because of lack of memory, or a failure in your
user-defined initialisation code (see

IPC_ProcStartup

), the
return value will still indicate success.

A better way to test failure is to specify a variable for the ’'ipcptr’
parameter. If this is NULL after this call, the process failed to
start.

SEE ALSO

IPC_ProcStartup ()

4

IPC_Command ()

4

IPC_Free

1.132 IPC_ListCommand()

DOpusSDK 101 /190

NAME
IPC_ListCommand - send a command to a list of processes
SYNOPSIS
IPC_ListCommand(list, command, flags, data, wait)
A0 DO D1 D2 D3

void IPC_ListCommand (struct ListLock =, ULONG, ULONG, ULONG, BOOL);

FUNCTION
Sends the same command to every process on the supplied list.
Optionally waits for a reply from every process.

INPUTS

list - list of processes

command — command ID to send

flags - command flags

data - command data

wait - specify TRUE if you want to wait for replies
RESULT

The command is sent to every process on the list. If 'wait’ 1is
TRUE, does not return until every process has replied.

SEE ALSO

IPC_Launch ()

4

IPC_Command ()

1.133 IPC_ProcStartup()

NAME
IPC_ProcStartup - startup code for an IPC process

SYNOPSIS
IPC_ProcStartup(data, code)
AQ Al

IPCData *IPC_ProcStartup (ULONG %, ULONG x*);

FUNCTION
Your IPC process should call this routine as the very first
instruction. It receives the startup message from the parent process,
and lets you retrieve your own IPCData handle.

INPUTS
data - pointer to a variable to receive a pointer to the data that
was passed to
IPC_Launch

code - address of a user-supplied initialisation routine to call. If

DOpusSDK 102/ 190

you provide this, your routine is called from this function.
The prototype of this routine is as follows

ULONG __asm code (register __a0 IPCData =*ipc,
register __al APTR data)

Your intialisation routine receives a pointer to the IPCData
handle of the new process, and a pointer to the data passed
to
IPC_Launch

This routine can do pretty much anything, but
you should keep it as simple as possible (there should
certainly be no IPC functions called from within it).
Your routine should return FALSE for failure and TRUE for
success. If it returns FALSE, the IPC_ProcStartup() call will
return NULL, and the new process should then quit.

RESULT

Returns a pointer to your new IPCData handle. The ’'data’ wvalue that
was passed to

IPC_Launch ()

is stored in the supplied variable.
If this routine returns NULL, it means an error occurred (either in
the intialisation of the new process, or in your own initialisation
code). In this case, you should exit immediately.

SEE ALSO

IPC_Launch ()

1.134 IPC_Reply()

NAME
IPC_Reply - reply to an IPC message

SYNOPSIS
IPC_Reply (msq)
A0

void IPC_Reply (IPCMessage x*);

FUNCTION
Call this routine to reply to IPCMessages you receive at your
command port (do not call ReplyMsg())

INPUTS
msg — message to reply

RESULT
The message is replied. It is possible to pass a return code back
to the sending task (providing the message was sent synchronously).
To do this, set the ’command’ field of the message to the value.
This will then be the return from the
IPC_Command ()

DOpusSDK

103 /190

other process.

SEE ALSO

function for the

IPC_Launch ()

4

IPC_Command ()

1.135 Layout_Routines

Layout Routines

AddObjectList ()
AddWindowMenus ()
BoundsCheckGadget ()
BuildMenuStrip ()
CheckObjectArea ()
ClearWindowBusy ()
CloseConfigWindow ()
DisableObject ()

DisplayObiject ()

EndRefreshConfigWindow ()

FindMenuItem()
FreeObjectList ()
FreeWindowMenus ()
GetGadgetValue ()
GetObject ()
GetObjectRect ()
GetWindowAppPort ()
GetWindowID ()
GetWindowMsg ()

LayoutResize ()

DOpusSDK 104/ 190

OpenConfigWindow ()
ReplyWindowMsqg ()
SetConfigWindowLimits ()
SetGadgetChoices ()
SetGadgetValue ()
SetWindowBusy ()
SetWindowID ()

StartRefreshConfigWindow ()
PURPOSE

1. The dopus5.library provides font-sensitive layout routines to make it
easy to create and use a user interface for your application or module. The
layout code is not as straightforward, or indeed as powerful, as MUI or some
of the other GUI engines available, and so you might want to consider using
one of those instead of the DOpus routines.

The normal procedure in creating an interface is

1. Define a list of "objects" (gadgets, text, etc)

2. Define a window
3. Call
OpenConfigWindow ()
to open the window
4. Call
AddObjectList ()
to add the obijects
5. Call

SetGadgetValue ()

to initialise gadgets
6. Message loop with

GetWindowMsg ()

7. Call

GetGadgetValue ()

to get gadget final values
8. Call

CloseConfigWindow ()

to close the window

2. The list of objects is defined as an array of ObjectDef structures.
You call
AddObjectList ()
to add a list of objects to a window; indeed, you
can make multiple calls to this function to add multiple lists. Each ObjectDef
structure is defined as follows:

od_Type

This field indicates the type of object. Current values are

DOpusSDK

105/190

OD_GADGET - a gadget
OD_TEXT - a text string
OD_AREA - a rectangular area
OD_IMAGE - an image

Two control values are also used:
OD_SKIP - skip this entry
OD_END - ends an ObjectDef array
od_ObjectKind

If od_Type is set to OD_GADGET, this field describes the type of
gadget. Valid types are:

BUTTON_KIND - standard push button

STRING_KIND - a string gadget

INTEGER_KIND - an integer gadget

HOTKEY_KIND - a hotkey field

CHECKBOX_KIND — a checkbox gadget

OPUS_LISTVIEW_KIND - an Opus listview gadget

PALETTE_KIND - a palette gadget (pen selection)

FILE_BUTTON_KIND - a button that opens a file requester

DIR_BUTTON_KIND - a button that opens a directory requester

FONT_BUTTON_KIND - a button that opens a font requester
(only works under v38 ASL)

FRAME_KIND - a frame (rectangular area)

FIELD_KIND - a readonly string gadget

NUMBER_KIND - a number display

TEXT_KIND - a text display

The above gadgets are all implemented by the dopus5.library. Many are
similar to their GadTools equivalents. Any GadTools gadget that is not
replaced by the above types is also available. Currently, these are:

LISTVIEW_KIND - standard GadTools listview
MX_KIND - radio buttons gadget

CYCLE_KIND - cycle gadget

SCROLLER_KIND - scroller gadget
SLIDER_KIND - slider gadget

If od_Type is OD_AREA or OD_TEXT, the od_ObjectKind field is used to
specify the pen used for text rendering. This is not a literal pen
number but is a DrawInfo pen index (eg TEXTPEN) .

od_CharDims

This field structure is used to define the character position of the
object. All objects (and windows, for that matter) have two sets of
positioning information - character and fine. The character position
is used to specify the size and position in "font units" - this value
is scaled for the current font and so allows the display to be
font-sensitive. A "font unit" is the average width of the font for

a horizontal coordinate, and the height of the font for a vertical
coordinate. The "Left" and "Top" fields of the IBox structure control

DOpusSDK 106 /190

the position of the object, and the "Width" and "Height" fields control
the size.

There are some magic values for object positioning and sizing. The
positioning values are:

POS_CENTER — use this in the "Left" or "Top" field to have
the object positioned in the center of the
window.
POS_RIGHT_JUSTIFY - position relative to the right/bottom border

POS_CENTER is an absolute value. POS_RIGHT_JUSTIFY is more of a flag,
used in conjunction with another value. For example, POS_RIGHT_JUSTIFY
by itself would position an object hard up against the right border.
POS_RIGHT_JUSTIFY-2 would position an object at a two ’font unit’
margin from the border.

The magic values for sizes are:

SIZE_MAXIMUM - the object will be the maximum possible size
in this direction

SIZE_MAX_LESS - maximum possible size minus an amount
For example, od_CharDims might be defined as:
{POS_CENTER, POS_RIGHT_JUSTIFY-1,SIZE_MAX_ LESS-4,2}

This would create an object that was centered in the display, and as
wide as possible with a two space gap on either side. The object would
be one space from the bottom border, and be two spaces high.

od_FineDims

This field structure is used to define the fine position and size of
the object. The fine position is given as an absolute pixel value, and
allows you to make adjustments for GUI components that do not scale
with the font (eg, borders are always 1 or 2 pixels high, irrespective
of the font size). You can also make fine adjustments through this
field when the od_CharDims field uses the POS_ and SIZE_ values.

od_GadgetText

This is the locale string ID for the gadget label, or text or area
string. It must be a valid ID in the locale specified in the
NewConfigWindow structure. If the TEXTFLAG_TEXT_STRING flag is set
for this object, the od_GadgetText field is a pointer to an actual
text string.

od_Flags

The object flags are heavily object dependent. For standard GadTools
gadgets, the standard GadTools flags apply. Some GadTools flags are

DOpusSDK

107 /190

also applicable to Opus gadgets:

PLACETEXT_LEFT
PLACETEXT_RIGHT
PLACETEXT_ABOVE (only works for some gadgets)
PLACETEXT_IN (only works for some gadgets)

General purpose Opus flags are:

TEXTFLAG_TEXT_STRING - this flag is used with all the object
types, and indicates that the od_GadgetText field of the ObjectDef
structure points to a literal text string and not a locale ID.

TEXTFLAG_NO_USCORE - if you specify this flag, an underscore
character in the string will be treated literally. Otherwise,
the underscore is used to specify a character to be underscored,
indicating a keyboard equivalent.

Flags for BUTTON_KIND gadgets:

BUTTONFLAG_OKAY_BUTTON - indicates that this button is an "ok"
button. The ’'enter’ key will automatically be used as a key
equivalent for this button. The label for this button is
automatically rendered in bold.

BUTTONFLAG_CANCEL_BUTTON - indicates that this button is a
"cancel” button. The ’escape’ key will automatically be used as a
key equivalent for this button.

BUTTONFLAG_TOGGLE_SELECT - specifies that you want a toggle-select
button (one that can be turned on or off).

BUTTONFLAG_THIN_BORDERS - specifies that you want ’‘thin’ borders
for the button. Thin borders are one pixel wide on all sides,
whereas normal borders are two pixels wide on the left and right,
and one pixel wide at the top and bottom. This flag can also

be used with CHECKBOX_KIND, FRAME_KIND, NUMBER_KIND, TEXT_KIND,
PALETTE_KIND, FILE_BUTTON_KIND, DIR_BUTTON_KIND and
FONT_BUTTON_KIND gadgets.

Flags for OPUS_LISTVIEW_KIND gadgets:

LISTVIEWFLAG_CURSOR_KEYS - specifies that the cursor keys can
be used to scroll up and down in this listview.

Flags for FILE_BUTTON_KIND gadgets:

FILEBUTFLAG_SAVE - specifies that the file requester is to be
opened in save mode.

Flags for OD_TEXT objects:

TEXTFLAG_RIGHT_JUSTIFY - right justify the text
TEXTFLAG_CENTER - center the text

Flags for OD_AREA obijects:

DOpusSDK

108 /190

AREAFLAG_RAISED - a raised rectangle
AREAFLAG_RECESSED - a recessed rectangle
AREAFLAG_THIN - draw rectangle with thin borders
AREAFLAG_ICON - draw an icon drop box

AREAFLAG_ERASE - erase the interior of the rectangle
AREAFLAG_LINE - draw a separator line
AREAFLAG_OPTIM - optimised refreshing when updating
AREAFLAG_TITLE - draw a group box with a title
AREAFLAG_NOFILL - don’t fill interior

od_1ID

This is the ID of the object. If the object is a gadget, it will

also set the gadget ID.

od_TagList

Object-specific taglist. For GadTools gadgets, all the standard
GadTools flags apply.

GTCustom_LocaleLabels — (USHORT «)

Used with : MX_KIND, CYCLE_KIND

This tag points to an array of locale IDs. It allows you to
specify the text contents of the gadgets using locale. The array

must be terminated with a 0 value. You can use this instead of
the GTCY_Labels or GTMX_Labels tags.

GTCustom_Image — (struct Image x*)
Used with : BUTTON_KIND

Points to an Image structure that defines an image to be displayed
within the button.

GTCustom_CallBack - (void __asm (*) (register __al struct Tagltem *,
register __a2 struct Window x))

Used with : All types

This tag allows you to specify the address of a callback function
that is called when the object is added to the window via

AddObjectList ()

The callback function is passed both the window
pointer and a pointer to the tag. The function can modify both the
ti_Tag and ti_Data values of the tag, and when it returns the
Tag will be re-evaluated with the new contents.

GTCustom_LayoutRel - USHORT

DOpusSDK 109 /190

Used with : All types

Lets you position objects relative to another. The ti_Data field
contains the ID of an object that xhas previously been addedx
(eg is before this one in the ObjectDef array). The new object
will be positioned relative to the specified object; from the
new object’s point of view, coordinate 0,0 is the top-left
corner of the relative object. You can use POS_CENTER and the
other magic position values with this tag. For example, to
position an object in the center of another one, you would

use the GTCustom_LayoutRel tag, and set char_dims.Left and
char_dims.Top for the new object to POS_CENTER.

If the window is resizeable, you must supply the GTCustom_CopyTags
tag as well.

GTCustom_LayoutPos — USHORT
Used with : All types

Lets you position objects based on the position of another obiject.
The ti_Data field contains the ID of an object that must have been
previously added. This tag is used in conjunction with the
following object flags:

POSFLAG_ADJUST_POS_X - X-position is relative to X-position
of other object

POSFLAG_ADJUST_POS_Y - Y-position is relative to Y-position
of other object

POSFLAG_ALIGN_X - Align X-position with other object
POSFLAG_ALIGN_Y - Align Y-position with other object

If the window is resizeable, you must supply the GTCustom_CopyTags
tag when you supply this tag.

GTCustom_Control - USHORT

Used with : CHECKBOX_KIND, FILE_BUTTON_KIND, DIR_BUTTON_KIND,
FONT_BUTTON_KIND

Specifies another gadget that this gadget controls. The ti_Data
field contains the ID of the other gadget. For CHECKBOX_KIND
gadgets, the other gadget will be disabled when the checkbox

is deselected, and enabled when it is selected. For the other
types of gadget, the other gadget MUST be a STRING_KIND, into
which will go the pathname that was selected by the file requester.

For FONT_BUTTON_KIND gadgets, the font name is copied into the
STRING_KIND gadget specified with this tag, and the font size is
copied into an INTEGER_KIND gadget with the control ID + 1.

DOpusSDK 110/190

GTCustom_TextAttr - struct TextAttr «
Used with : All gadgets

Lets you specify the font that will be used for a specific gadget.

GTCustom_MinMax - ULONG
Used with : SLIDER_KIND, INTEGER_KIND, SCROLLER_KIND

Allows you to specify the minimum and maximum values of a gadget.
The ULONG contains the maximum value in the upper 16 bits and the
minimum value in the lower 16 bits. For SLIDER_KIND and
SCROLLER_KIND, you can also use the GadTools equivalent tags.

GTCustom_ThinBorders - BOOL

Used with : BUTTON_KIND, CHECKBOX_KIND, FRAME_KIND, NUMBER_KIND,
TEXT_KIND, PALETTE_KIND, FILE_BUTTON_KIND,

DIR_BUTTON_KIND and FONT_BUTTON_KIND

This tag can be used instead of the BUTTONFLAG_THIN_BORDERS flag.
This tag also allows you to control thin borders when accessing
the Opus BOOPSI gadgets directly.

GTCustom_Borderless - BOOL

Used with : BUTTON_KIND, CHECKBOX_KIND, FRAME_KIND, NUMBER_KIND,
TEXT_KIND, PALETTE_KIND, FILE_BUTTON_KIND,

DIR_BUTTON_KIND and FONT_BUTTON_KIND

If set to TRUE, this causes the gadget to be rendered without

a border.

GTCustom_LocaleKey — ULONG

Used with : All gadgets

This tag takes a locale ID, and uses the corresponding string to
set the key equivalent for this gadget. The string is searched
for the first underscore character, and the character immediately
after the underscore is used as the key equivalent.
GTCustom_NoSelectNext - BOOL

Used with : STRING_KIND, INTEGER_KIND

Ordinarily, pressing return in a string field causes the cursor

to move to the next field automatically. If you specify TRUE for
this tag, pressing return will simply deactivate the current field.

DOpusSDK 111/190

GTCustom_PathFilter - BOOL
Used with : STRING_KIND
If you specify TRUE for this tag, the string field will
automatically filter the / and : path characters out.
GTCustom_Secure - BOOL
Used with : STRING_KIND
If you specify TRUE for this tag, the string field will operate
in secure "password" mode.
GTCustom_History - Att_List =«
Used with : STRING_KIND, INTEGER_KIND
Lets you specify a history list for the gadget. See the docs
for the EH_History tag under

GetEditHook ()

for more information.

GTCustom_CopyTags - BOOL
Used with : All types
If you specify TRUE for this tag, the supplied tag list will be
copied when the object is created. You need to specify this tag
in conjunction with other tags, depending on the situation.
GTCustom_FontPens - ULONG x
Used with : FONT_BUTTON_KIND
The ti_Data field must point to a ULONG that will be used to
store the front pen, back pen and draw mode result from the
font requester. The data is stored with FgPen in the lowest
byte, BgPen in the second byte and DrawMode in the third
byte. The most significant byte is not used. You must supply
the GTCustom_CopyTags tag if you use this tag.
GTCustom_FontPenCount - short
Used with : FONT_BUTTON_KIND (only under ASL v39.9)
This allows you to specify the number of pens displayed in the
font requester. It is used in conjunction with the

GTCustom_FontPenTable tag, and the GTCustom_CopyTags tag must
also be supplied.

DOpusSDK 112/190

GTCustom_FontPenTable - UBYTE =

Used with : FONT_BUTTON_KIND (only under ASL v39.9)

This is used with GTCustom_FontPenCount. The ti_Data field points
to a UBYTE array of pen numbers to display in the font requester.
You must also specify the GTCustom_CopyTags tag.

GTCustom_Bold - BOOL

Used with : BUTTON_KIND, CHECKBOX_KIND, FRAME_KIND, NUMBER_KIND,
TEXT_KIND, PALETTE_KIND, FILE_BUTTON_KIND,

DIR_BUTTON_KIND and FONT_BUTTON_KIND

If set to TRUE, this tag causes the label for the button to be
rendered in bold. Use GTICustom_Style for greater control.
GTCustom_NoGhost - BOOL

Used with : BUTTON_KIND, CHECKBOX_KIND, FRAME_KIND, NUMBER_KIND,
TEXT_KIND, PALETTE_KIND, FILE_BUTTON_KIND,

DIR_BUTTON_KIND and FONT_BUTTON_KIND

If set to TRUE, when the button is disabled its image will not
be ghosted.

GTCustom_Style - ULONG

Used with : BUTTON_KIND, CHECKBOX_KIND, FRAME_KIND, NUMBER_KIND,
TEXT_KIND, PALETTE_KIND, FILE_BUTTON_KIND,

DIR_BUTTON_KIND and FONT_BUTTON_KIND

This tag allows you to control the text style used to render the
button label. Valid flags for the style are FSF_BOLD and
FSF_ITALIC.

GTCustom_FrameFlags - ULONG

Used with : FRAME_KIND

This tag lets you specify the type of frame rendered for the
frame gadget. Currently the only value valid is AREAFLAG_RECESSED,
to specify a recessed frame.

GTCustom_ChangeSigTask - struct Task =

Used with : STRING_KIND, INTEGER_KIND

This tag lets you specify a Task that is to be signalled whenever
the contents of the string gadget change.

DOpusSDK 113/190

GTCustom_ChangeSigBit - short
Used with : STRING_KIND, INTEGER_KIND
This tag lets you specify the bit that a task is signalled with
whenever the contents of the string gadget change.
GTCustom_Justify - short
Used with : TEXT_KIND, NUMBER_KIND
This tag lets you specify the justification of the text displayed
in the gadget. Valid values are JUSTIFY_CENTER (the default),
JUSTIFY_LEFT and JUSTIFY_RIGHT.

In addition to these tags, OPUS_LISTVIEW_KIND gadgets (via the Opus

BOOPSI listview class) supports several additional tags. See the
section on the listview class for information on these.

The last member in an array of ObjectDef structures must have a od_Type
of OD_END set.

3. The layout routines can only add gadgets to a special sort of window;
one that has been created with the
OpenConfigWindow ()

call. Two structures
are needed to open one of these windows. The first, a ConfigWindow structure,
specifies the position and size of the new window. It has cw_CharDims and
cw_FineDims fields, analagous to the fields in ObjectDef structures.
The second is a NewConfigWindow structure. This is initialised as follows:
nw_Parent
This field points to the parent of the Window. The parent can be
either another window (the default) or a screen (if the
WINDOWFE_SCREEN_PARENT flag is set).
nw_Dims
This points to the ConfigWindow structure used to define the size
of the new window.

nw_Title

This points to a title string for the new window.

nw_Locale

This points to a valid DOpusLocale structure for the window. All
ObjectDefs that use a locale ID will obtain their strings via this

DOpusSDK 114/190

structure.

nw_Port

Allows you to specify a message port to use; you should set this to
NULL.

nw_Flags

Control flags. Valid values are:

WINDOW_SCREEN_PARENT - nw_Parent points to a Screen
WINDOW_NO_CLOSE - no close gadget on the window
WINDOW_NO_BORDER - borderless window
WINDOW_SIMPLE - simplerefresh window
WINDOW_AUTO_REFRESH - use with WINDOW_SIMPLE
WINDOW_AUTO_KEYS - handle keypresses automatically
WINDOW_REQ_FILL - backfill the window with stipple pattern
WINDOW_NO_ACTIVATE - don’t activate the window on open
WINDOW_VISITOR — open as a visitor window
WINDOW_SIZE_RIGHT - size gadget in right border
WINDOW_SIZE_BOTTOM - size gadget in bottom border
WINDOW_ICONIFY - iconify gadget in title bar

nw_Font

Allows you to specify a font to use for the window. If NULL, the
current screen font will be used.

1.136 AddObjectList()

NAME
AddObjectList - add a list of objects to a window

SYNOPSIS
AddObjectList (window, objects)
A0 Al

ObjectList *AddObjectList (struct Window %, ObjectDef x);

FUNCTION
This function adds a list of objects to a window. The window must have
previously been opened with the

OpenConfigWindow ()
call.
INPUTS
window - window to add the objects to
objects - array of objects to add

RESULT

DOpusSDK 115/190

Returns a pointer to the list of created objects, or NULL for failure.

NOTES
You can add multiple object lists to a window with multiple calls to
AddObjectList () . These lists are chained together, and as long as

you pass the address of the FIRST object list to any functions that
search an object 1list, all chained lists will be searched
automatically.

SEE ALSO
OpenConfigWindow ()

4

SetGadgetValue ()

1.137 AddWindowMenus()

NAME
AddWindowMenus — add menus to a window
SYNOPSIS
AddWindowMenus (window, menus)
AQ Al

void AddWindowMenus (struct Window =*, MenuData =x);

FUNCTION
This function makes it easy to add menus to a window opened via

OpenConfigWindow ()
Even if you don’t use the
AddObjectList ()
routine
to add gadgets to the window, you can still use this call to add
menus.

AddWindowMenus () takes an array of MenuData structures, and constructs
and initialises the Intuition Menu structures automatically. The

MenuData structures are initialised as follows:

md_Type - entry type; NM_TITLE, NM_ITEM or NM_SUB. The array
must be terminated by an NM_END item.

md_ID - the ID value for the menu item.

md_Name — the name of the menu item. This can either be a
locale ID, or, if the MENUFLAG_TEXT_STRING flag is
set, a pointer to a real string.

md_Flags — control flags.

The md_Flags field supports the standard Intuition and GadTools menu
flags as well as several custom flags:

DOpusSDK

116/190

MENUFLAG_TEXT_STRING - md_Name is a real string

MENUFLAG_COMM_SEQ - the menu will be given a command sequence
(Right-Amiga + a key)
MENUFLAG_AUTO_MUTEX - automatic mutual exclusion

If MENUFLAG_COMM_SEQ 1is specified, the key used for the command
sequence is normally the first character of the menu name. However,
you can specify a character to use instead of this, by setting the
MENUFLAG_USE_SEQ flag, and using the MENUFLAG_MAKE_SEQ() macro.

For example, to specify a command sequence of Right Amiga and A, you
would use

MENUFLAG_COMM_SEQ | MENUFLAG_USE_SEQ |MENUFLAG_MAKE_SEQ ("A")

The automatic mutual exclusion works on all items at the current
level that have the CHECKIT flag set.

INPUTS

window - window to add menus to

menus - array of MenuData structures, terminated with NM_END
RESULT

The menus are added to the window. You can check if this operation
failed (through lack of memory) by examining the window->MenuStrip
pointer; if NULL, the window has no menus.
SEE ALSO
FindMenulItem ()

4

FreeWindowMenus ()

138 BoundsCheckGadget()

NAME
BoundsCheckGadget - bounds check an integer gadget

SYNOPSIS
BoundsCheckGadget (1list, id, min, max)
AQ DO D1 D2

long BoundsCheckGadget (ObjectList %, ULONG, long, long);

FUNCTION

This routine tests the value of an integer gadget against the supplied

minimum and maximum, adjusts and refreshes it if it is invalid, and
returns the new value.

INPUTS
list - ObjectlList containing the gadget
id - gadget ID
min - minimum value
max — maximum value

DOpusSDK 117 /190

RESULT
Returns the new value of the gadget.

1.139 BuildMenuStrip()

NAME
BuildMenuStrip - build a MenuStrip easily

SYNOPSIS
BuildMenuStrip (menus, locale)
AQ Al

struct Menu xBuildMenuStrip (MenuData =, struct DOpusLocale x);

FUNCTION
This routine takes the supplied MenuData array, and returns an
initialised menu strip. This menu strip can then be layed out
using the LayoutMenus () function in gadtools.library, and added
to any window.

INPUTS
menus - array of MenuData structures
locale - locale to use for text strings
RESULT

Returns a pointer to the head of the menu strip.

NOTES
The menus returned by this function can be used on any window. If
your window was opened with
OpenConfigWindow ()
, you should use the

AddWindowMenus ()
function instead of this one.

The returned menu strip can be freed with a call to FreeMenus () in
gadtools.library.

See the instructions for
AddWwindowMenus ()
for information about
initialising the MenuData structures.

SEE ALSO
AddWindowMenus ()

, gadtools.library/LayoutMenusA(),
gadtools.library/FreeMenus ()

DOpusSDK 118/190

1.140 CheckObjectArea()

NAME
CheckObjectArea - check if a point is within an object’s area

SYNOPSIS
CheckObjectArea (object, x, V)
AQ DO D1

BOOL CheckObjectArea (GL_Object x, long, long);

FUNCTION
This routine tests if the coordinate is within the "select" area of
the object.

INPUTS
object - object to test
X — x coordinate
y — y coordinate

RESULT
Returns TRUE if the point falls within the object.

1.141 ClearWindowBusy()

NAME
ClearWindowBusy - make a window unbusy
SYNOPSIS
ClearWindowBusy (window)
AQ

void ClearWindowBusy (struct Window x);
FUNCTION
This routine undoes the effect of a
SetWindowBusy ()
call. The mouse

pointer of the window is returned to normal, and input is unblocked.

INPUTS
window - the window in question

SEE ALSO

SetWindowBusy ()

1.142 CloseConfigWindow()

DOpusSDK 119/190

NAME
CloseConfigWindow - close a window

SYNOPSIS
CloseConfigWindow (window)
AQ

void CloseConfigWindow (struct Window x);

FUNCTION
This function closes a window that was opened with a call to

OpenConfigWindow ()
All memory associated with the window, including
object lists, menus and memory allocated from the window’s memory
pool is freed by this call.

INPUTS
window — window to close. MUST have been opened with
OpenConfigWindow ()
RESULT

The window is closed.
SEE ALSO

OpenConfigWindow ()

1.143 DisableObiject()

NAME
DisableObject - disable/enable an object

SYNOPSIS
DisableObject (1list, id, state)
AQ DO D1

void DisableObject (ObjectList %, ULONG, BOOL);

FUNCTION
This routine disables or enables an object. Currently, only gadgets
support being disabled.

INPUTS
list - ObjectlList containing object
id - object ID
state - TRUE for disable, FALSE for enable

RESULT
The object is disabled or enabled.

DOpusSDK 120/ 190

1.144 DisplayObject()

NAME
DisplayObject - redisplay an object

SYNOPSIS
DisplayObject (window, object, fpen, bpen, text)
AQ Al DO D1 A2

void DisplayObject (struct Window =, GL_Object x, long, long, char x);

FUNCTION
This routine lets you change and refresh an object. Currently, it is
only used for OD_TEXT and OD_AREA objects.

INPUTS
window — window containing the object
object - object to display
fpen - new foreground pen, -1 for no change

bpen - new background pen, -1 for no change
text - new text
RESULT

The display is refreshed immediately.

1.145 EndRefreshConfigWindow()

NAME
EndRefreshConfigWindow - finish refreshing a config window

SYNOPSIS
EndRefreshConfigWindow (window)
AQ
void EndRefreshConfigWindow (struct Window x);
FUNCTION
This is analagous to calling GT_EndRefresh (window, TRUE) on the

window. It finishes and cleans up the refresh process begun with

StartRefreshConfigWindow ()
INPUTS
window - window to end refresh of
NOTES
If you are using a smart refresh window, or have set the
WINDOW_AUTO_REFRESH flag, you will not need to call this function.

SEE ALSO

StartRefreshConfigWindow ()

DOpusSDK 121/190

, gadtools.library/GT_EndRefresh ()

1.146 FindMenultem()

NAME
FindMenuItem - find a menu item by ID

SYNOPSIS
FindMenulItem (menu, id)
AQ DO

struct Menultem *FindMenultem(struct Menu *, USHORT) ;

FUNCTION

Traverses the menu list from the supplied pointer, searching for
a menu with the given ID. This ID is extracted using the
GTMENUITEM_USERDATA () macro. If you constructed the menu item
with

AddWindowMenus ()

or

BuildMenuStrip ()

, the ID was supplied
in the md_ID field of the MenuData structure.

INPUTS
menu - Menu to start search

id - ID to search for

RESULT
Returns a pointer to the MenulItem or NULL if not found.

SEE ALSO
AddWindowMenus ()

4

BuildMenuStrip ()

1.147 FreeObjectList()

NAME
FreeObjectList - free a list of objects

SYNOPSIS
FreeObjectList (list)
A0

void FreeObjectList (ObjectList *);

FUNCTION
This routine frees the supplied list of objects. If there are any

DOpusSDK 122/190

gadgets in the list, they are automatically removed from the window
before being freed.

Ordinarily you do not need to call this function; any existing objects
are freed automatically when you close the window with

CloseConfigWindow ()
However, this function together with

AddObjectList ()
allows you to add and remove objects (gadgets) from
the window dynamically. This is something that is not possible under
GadTools.

INPUTS
list - object list to free

RESULT
The list is delinked and all its objects are freed. If you are freeing
just one list from a window, you will need to refresh the display
after you have freed the objects.

SEE ALSO
AddObjectList ()

14

CloseConfigWindow ()

1.148 FreeWindowMenus()

NAME
FreeWindowMenus - free menus from a window
SYNOPSIS
FreeWindowMenus (window)
AQ

void FreeWindowMenus (struct Window =*);

FUNCTION
Frees the menus that were attached with a call to
AddWindowMenus ()

Normally you do not need to call this function, as menus are
automatically freed when you close the window with

CloseConfigWindow ()
INPUTS
window - window to free menus for
RESULT

The menus are removed from the window and freed.

DOpusSDK 123/190

SEE ALSO

AddWindowMenus ()

1.149 GetGadgetValue()

NAME
GetGadgetValue - get the value of a gadget

SYNOPSIS
GetGadgetValue (1list, id)
AQ Al

long GetGadgetValue (ObjectList %, USHORT) ;

FUNCTION
This returns the current value of the gadget, specified by gadget ID.
The supplied list is searched for the gadget.

INPUTS
list - Objectlist containing the gadget
id - gadget ID

RESULT
Returns the current value of the gadget. The contents of the return
value are dependant on the type of gadget:

BUTTON_KIND - if the BUTTONFLAG_TOGGLE_SELECT flag was set,
returns TRUE or FALSE to indicate the state of
the gadget.

MX_KIND

CYCLE_KIND

OPUS_LISTVIEW_KIND

LISTVIEW_KIND

SLIDER_KIND

SCROLLER_KIND

PALETTE_KIND - returns the current selection or value

CHECKBOX_KIND — returns TRUE or FALSE to indicate the state
of the gadget.

INTEGER_KIND - returns the integer value of the gadget

STRING_KIND - returns a pointer to the string contents. This
pointer is READ ONLY!

SEE ALSO

SetGadgetValue ()

DOpusSDK 124 /190

1.150 GetObject()

NAME
GetObject - get an object by ID from a list

SYNOPSIS
GetObject (list, id)
A0 DO

GL_Object xGetObject (ObjectList %, ULONG);

FUNCTION
Searches the supplied object list (and any chained lists) for the
object with the given ID value.

INPUTS
list - ObjectList to search
id - ID to search for

RESULT
Returns a pointer to the object or NULL if not found.

SEE ALSo

AddObjectList ()

1.151 GetObjectRect()

NAME
GetObjectRect - get an object’s rectangle

SYNOPSIS
GetObjectRect (list, id, rect)
A0 DO Al

BOOL GetObjectRect (ObjectList %, ULONG, struct Rectangle x);

FUNCTION
Searches for the object, and if found, copies the coordinates of the
object’s display rectangle into the supplied structure.

INPUTS
list - ObjectlList containing the object
id - ID of the object
rect - Rectangle structure for result

RESULT
Returns FALSE if the object could not be found.

DOpusSDK 125/ 190

1.152 GetWindowAppPort()

NAME
GetWindowAppPort - get a window’s application port

SYNOPSIS
GetWindowAppPort (window)
AQ

struct MsgPort =*GetWindowAppPort (struct Window x);

FUNCTION
If a window has registered itself with a call to
SetWindowID ()
, this

function will return the address of its application message port.

INPUTS
window - window in question

RESULT
Returns a pointer to the message port, or NULL if the window wasn’t
registered.

SEE ALSO

SetWindowID ()

7

GetWindowID ()

1.153 GetWindowlD()

NAME
GetWindowID - get a window’s ID code

SYNOPSIS
GetWindowID (window)
AQ

ULONG GetWindowID (struct Window =*);

FUNCTION
If a window has been registered with
SetWindowID ()
, this function
returns the ID code.

INPUTS
window - window in question

RESULT
Returns the ID code of the window if it is registered. Returns
WINDOW_UNKNOWN if not registered. Returns WINDOW_UNDEFINED if the

DOpusSDK 126 /190

Window is registered, but does not have an ID or application port.
SEE ALSO

SetWindowID ()

4

GetWindowAppPort ()

1.154 GetWindowMsg()

NAME
GetWindowMsg - get IntuiMessage for a window

SYNOPSIS
GetWindowMsg (port)
AO

struct IntuiMessage *GetWindowMsg (struct MsgPort x);

FUNCTION
This routine is analagous to the GT_GetIMsg call under GadTools.
It searches the supplied port for an IntuiMessage, performs
pre-processing on the message and returns the result to you.
It is highly recommended that you use this instead of a normal call
to GetMsg () when using the layout routines. In particular, auto
refreshing of simplerefresh windows, resizing, key equivalents and
proper gadget processing will all be affected if you do not call
this function.

INPUTS
port — port to search for messages (window->UserPort)

RESULT
Returns a pointer to the message, or NULL if there was none. You
must call
ReplyWindowMsg ()
to reply to messages from this function.

SEE ALSO

ReplyWindowMsg ()

1.155 LayoutResize()

NAME
LayoutResize - resize a window

SYNOPSIS
LayoutResize (window)
0]

DOpusSDK 127 /190

void LayoutResize (struct Window =) ;

FUNCTION
This routine is called to handle refreshing of a window when it is
resized by the user. If you call
GetWindowMsqg ()
in your event loop,
this is called automatically for you.

INPUTS
window - window that has been resized

RESULT
All objects in the window are resized (if they were defined with
proportional or relative sizes) and refreshed.

1.156 OpenConfigWindow()

NAME
OpenConfigWindow - open a window

SYNOPSIS
OpenConfigWindow (newwin)
A0

struct Window xOpenConfigWindow (NewConfigWindow x);

FUNCTION
This routine opens the window defined by the suppled NewConfigWindow
structure.

INPUTS
newwin — initialised NewConfigWindow structure

RESULT
Returns a pointer to the Window. This is a normal Intuition window
in most respects, but its UserData field points to a structure of
additional information. You MUST NOT modify the UserData field of
such a window.

SEE ALSO
AddObjectList ()

4

CloseConfigWindow ()

1.157 ReplyWindowMsg()

DOpusSDK 128/ 190

NAME
ReplyWindowMsg - reply to a message

SYNOPSIS
ReplyWindowMsg (msg)
AQ

void ReplyWindowMsg (struct IntuiMessage x*);

FUNCTION
Call this function to reply to a message you received via

GetWindowMsg ()
INPUTS
msg — message to reply to
SEE ALSO
GetWindowMsg ()

1.158 SetConfigWindowLimits()

NAME
SetConfigWindowLimits — set size limits for a window
SYNOPSIS
SetConfigWindowLimits (window, min, max)
AQ Al A2

void SetConfigWindowLimits (struct Window %, ConfigWindow x,
ConfigWindow =) ;

FUNCTION
Sets the sizing limits of the supplied window. The minimum and
maximum dimensions are specified with two ConfigWindow structures.
INPUTS
window - window to set limits for
min - minimum dimensions
max — maximum dimensions

SEE ALSO

OpenConfigWindow ()

1.159 SetGadgetChoices()

DOpusSDK 129/190

NAME
SetGadgetChoices - set the "choices" for a gadget

SYNOPSIS
SetGadgetChoices (list, id, choices)
AQ DO Al

void SetGadgetChoices (ObjectList x, ULONG, APTR);

FUNCTION
This routine sets the choices for a gadget. It operates differently for
different types of gadgets:

SCROLLER_KIND

Sets the maximum value of the gadget, and adjusts the current value
if it exceeds this limit.

SLIDER_KIND

Sets the minimum (lower 16 bits) and maximum (upper 16 bits)
values of the gadget, and adjusts the current value if it exceeds
either of these limits.

LISTVIEW_KIND/OPUS_LISTVIEW_KIND

Sets the list contents pointer. This is either a struct List % or
an Att_List x. If you set the value to NULL, the current list
will be detached from the gadget and the list will be cleared.

If you set the value to -1, the list will be detached but the
gadget display will not be cleared.

CYCLE_KIND

Sets the cycle gadget contents. This points to a char » array, or
NULL if you want the gadget to be empty. The array must be
null-terminated.

INPUTS
list - ObjectlList containing the gadget
id - gadget ID
choices - new choices for the gadget

RESULT
The display is updated immediately, if appropriate.

1.160 SetGadgetValue()

NAME
SetGadgetValue - set the value of a gadget

SYNOPSIS
SetGadgetValue (list, id, wvalue)

DOpusSDK 130/ 190

A0 DO D1

void SetGadgetValue (ObjectList =, USHORT, ULONG) ;

FUNCTION
Sets the value of a gadget. See the instructions for
GetGadgetValue ()
for a list of the gadgets a value can be set for. Note that in <
the

case of a STRING_KIND gadget, the string that you supply is copied,
and does not need to remain valid once you have set it.

INPUTS
list - ObjectlList containing the gadget
id - gadget ID

value — new value for the gadget

RESULT
The display is updated immediately.

SEE ALSO

GetGadgetValue ()

1.161 SetWindowBusy()

NAME
SetWindowBusy — make a window busy
SYNOPSIS
SetWindowBusy (window)
A0

void SetWindowBusy (struct Window x);

FUNCTION
Makes the supplied window busy. The mouse pointer is changed to the
system busy pointer, and all gadget input to the window is blocked.
You must call
ClearWindowBusy ()
to reverse this state.

INPUTS
window - window to make busy

RESULT
The window goes busy.

NOTES
You can only call this routine on a window opened with

OpenConfigWindow ()

DOpusSDK 131/190

SEE ALSo
OpenConfigWindow ()

4

ClearWindowBusy ()

1.162 SetWindowlID()

NAME
SetWindowID - register a window’s ID
SYNOPSIS
SetWindowID (window, idptr, id, port)
A0 Al DO A2

void SetWindowID (struct Window x, WindowID %, ULONG, struct MsgPort «);

FUNCTION
This routine "registers" a window, giving it an ID value and
associating a message port with it.

This is invaluable in a drag and drop situation, when you want to
determine whether a particular window supports a particular type of
drop operation.

The function takes a pointer to a WindowID structure, which is stored
in the UserData field of the Window. You therefore lose the use of the
UserData field, but you can easily recover it by embedding a WindowID
structure in a larger structure.

It also takes an ID value, and a pointer to a message port. These
values are retrievable with the
GetWindowID ()
and
GetWindowAppPort ()
calls.

All windows opened with

OpenConfigWindow ()

have an ID associated
with them automatically; by default, the ID is set to WINDOW_UNDEFINED.
If you wish to change it, you can use the SET_WINDOW_ID () macro.

INPUTS

window - window to register

idptr - pointer to WindowID structure. This MUST remain valid for the
life of the window

id — ID value for the window. You should set the WINDOW_USER bit
of any IDs you define.

port - pointer to message port. This does not actually have to be

a message port; it can be any 32 bit wvalue.

RESULT
The window association is made.

DOpusSDK 132/190

SEE ALSO
GetWindowID ()

4

GetWindowAppPort ()

1.163 StartRefreshConfigWindow()

NAME
StartRefreshConfigWindow — begin refreshing a window

SYNOPSIS
StartRefreshConfigWindow (window, finish)
AQ DO

void StartRefreshConfigWindow (struct Window %, long);

FUNCTION
This routine begins refresh of a simplerefresh window that was
opened with
OpenConfigWindow ()
If you specify the WINDOW_AUTO_REFRESH
flag, you will never need to call this function.

INPUTS

window — window to begin refreshing

finish - if set to TRUE, the refresh is ended by this function too. Use
this if you don’t want to do any rendering of your own for
the refresh (but if that’s the case, why not just use
WINDOW_AUTO_REFRESH?)
RESULT

Refreshing is started (and optionally finished). All the objects in

the window will be refreshed.

SEE ALSO

EndRefreshConfigWindow ()
, intuition.library/BeginRefresh ()

1.164 List_Routines

List Routines

AddSorted ()

Att_ChangeNodeName ()

DOpusSDK

133/190

Att_FindNode ()
Att_FindNodeData ()
Att_FindNodeNumber ()
Att_NewList ()
Att_NewNode ()
Att_NodeCount ()
Att_NodeDataNumber ()
Att_NodeName ()
Att_NodeNumber ()
Att_PosNode ()
Att_RemList ()
Att_RemNode ()
FindNameTI ()
GetSemaphore ()
InitListLock ()
IsListLockEmpty ()
LockAttList ()
SwapListNodes ()

UnlockAttList ()

1.165 AddSorted()

NAME
AddSorted - add a node to a list in alphabetical order

SYNOPSIS
AddSorted (list, node)
AQ Al

void AddSorted(struct List #*, struct Node x);

FUNCTION
This function adds a Node to a List, in alphabetical order based on
1n_Name.

DOpusSDK 134/190

INPUTS
list - List to add Node to
node - Node to add

RESULT
The node is inserted in the list in its alphabetical position.
ALL the nodes in the list must have a valid 1n_Name, or this routine
will cause enforcer hits.
NOTES
This routine uses a simple insertion sort based on strcmpi(). As such,

it is neither terrible efficient, or locale-sensitive.

SEE ALSO
exec.library/Insert ()

1.166 Att_ChangeNodeName()

NAME
Att_ChangeNodeName - change the name of a node

SYNOPSIS
Att_ChangeNodeName (node, name)
AD Al

void Att_ChangeNodeName (Att_Node =, char x);

FUNCTION
Frees the old name of the node and copies the new name.

INPUTS
node - Att_Node to change name for

name - new name of the node

RESULT
The new name is copied and installed.

SEE ALSO

Att_NewNode ()

1.167 Att_FindNode()

NAME
Att_FindNode - find a node by number

SYNOPSIS
Att_FindNode (list, number)
AQ DO

Att_Node *Att_FindNode (Att_List x, long);

DOpusSDK 135/190

FUNCTION
This routine finds the specified node in the list and returns a
pointer to it.

INPUTS
list - list to search
number - cardinal number of the node to find

RESULT
Returns the specified Att_Node or NULL if not found.

NOTES
This routine can also work on normal Lists with proper type-casting.

SEE ALSO
Att_NewNode ()

4

Att_NodeName ()

1.168 Att_FindNodeData()

NAME
Att_FindNodeData - find a node by its data

SYNOPSIS
Att_FindNodeData (list, data)
AQ DO

Att_Node *Att_FindNodeData (Att_List =x, ULONG) ;

FUNCTION
This function searches the list for a node with data that matches
the supplied ULONG value (the data is specified with the
Att_NewNode ()
function) .

INPUTS
list - list to search

data - data to look for

RESULT
Returns the Att_Node if found, otherwise NULL.

SEE ALSO

Att_NewNode ()

1.169 Att_FindNodeNumber()

DOpusSDK 136/ 190

NAME
Att_FindNodeNumber - find cardinal number of a node
SYNOPSIS
Att_FindNodeNumber (list, node)
AQ Al

long Att_FindNodeNumber (Att_List %, Att_Node =x);
FUNCTION
This routine searches the list for the specified node, and returns

the offset from the beginning of the list.

INPUTS
list - list to search
node - node to look for

RESULT
Returns the cardinal number of the node or -1 if not found.

NOTES
This routine can also work on normal Lists with proper type-casting.

SEE ALSO

Att_NewNode ()

1.170 Att_NewList()

NAME
Att_NewList - create a new list
SYNOPSIS
Att_NewList (flags)
DO

Att_List xAtt_NewList (ULONG) ;

FUNCTION
Creates a new Att_List structure, which you use in conjunction with
Att_Nodes. These functions provide a convenient way of dynamically
allocating members of lists and performing searches and sorts on them.

INPUTS
flags - control flags. Currently valid values are
LISTF_LOCK - list is to be shared and requires locking
LISTF_POOL - use memory pooling for nodes and names

If you specify LISTF_LOCK, a semaphore will be initialised for
this list. Any of the list management functions in the
dopus5.library will lock the semaphore before accessing the
list.

DOpusSDK 137 /190

If you specify LISTF_POOL, a small memory pool will be used
to allocate list nodes and node names, which can result in
greater speed and less memory fragmentation.

RESULT
Returns pointer to an Att_List structure or NULL for failure.

SEE ALSO

Att_RemList ()
, exec.library/NewList ()

1.171 Att_NewNode()

NAME
Att_NewNode - add a new node to a list

SYNOPSIS
Att_NewNode (list, name, data, flags)
A0 Al DO D1

Att_Node xAtt_NewNode (Att_List %, char %, ULONG, ULONG);

FUNCTION
This routine allocates a new node and adds it to the specified list.
It can also allocate and copy a name for the node, and store
user—-defined data with it. The new node can be added to the list
sorted in several ways.

INPUTS
list - list to add node to
name - name for the node (will be copied)
data - user-defined data for the node

flags - control flags. Currently valid flags are:
ADDNODEF_ SORT — sort names alphabetically

ADDNODEF_EXCLUSIVE - name must be exclusive; if a node
already exists with this name, the
call will fail. Only works in
conjunction with ADDNODEF_SORT.

ADDNODEF_NUMSORT - the node name is taken to be an
ascii string containing a number,
and the sort is based on numerical
order rather than ascii order (so
that 10 would come after 1 rather
than before).

ADDNODEF_PRI - sort is based on priority. If you
specify this flag, the ’data’
parameter is taken to be the node’s
priority.

DOpusSDK

138/190

If no sorting flags are specified, the node is added to the
end of the list.

RESULT
If successful, the new Att_Node is returned.

SEE ALSO
Att_NewList ()

4

Att_RemNode ()

1.172 Att_NodeCount()

NAME
Att_NodeCount - count the nodes in a list
SYNOPSIS
Att_NodeCount (list)
AQ

long Att_NodeCount (Att_List =*);

FUNCTION
Returns the number of nodes in the list.

INPUTS
list - list to count

NOTES
This routine can also work on normal Lists with proper type-casting.

SEE ALSO

Att_NewNode ()

1.173 Att_NodeDataNumber()

NAME
Att_NodeDataNumber - find cardinal number of a node
SYNOPSIS
Att_NodeDataNumber (list, data)
A0 DO

long Att_NodeDataNumber (Att_List =%, ULONG);

FUNCTION
This routine is similar to

DOpusSDK

139/190

Att_FindNodeNumber ()

, except that it takes
a ULONG value and searches the list for a node with that value as
it’s ’"data’ (the data specified in the call to

Att_NewNode

) .

INPUTS
list - list to search

data - node data to look for

RESULT
Returns the Att_Node if found, or NULL.

SEE ALSO
Att_NewNode ()

4

Att_FindNodeNumber ()

1.174 Att_NodeName()

NAME
Att_NodeName - find a node name by number
SYNOPSIS
Att_NodeName (1list, number)
AQ DO

char *Att_NodeName (Att_List %, long);

FUNCTION
This routine is similar to
Att_FindNode ()
except that it returns
a pointer to the node’s name rather than the node itself.

INPUTS
list - list to search
number - cardinal number of the node to find

RESULT
Returns a pointer to the node’s name, or NULL if not found.

NOTES

This routine can also work on normal Lists with proper type-casting.

SEE ALSO

Att_NewNode ()

4

Att_FindNode ()

DOpusSDK 140 /190

1.175 Att_NodeNumber()

NAME
Att_NodeNumber - find cardinal number of node by name
SYNOPSIS
Att_NodeNumber (list, name)
A0 Al

long Att_NodeNumber (Att_List x, char *);

FUNCTION
This routine is similar to
Att_FindNodeNumber ()
, except that you
specify a name to search for rather than a node pointer.

INPUTS
list - list to search
name - name of node to search for

RESULT
Returns the cardinal number of the node or -1 if not found.

NOTES
This routine can also work on normal Lists with proper type-casting.
The search is not case-sensitive.

SEE ALSO
Att_NewNode ()

4

Att_FindNodeNumber ()

1.176 Att_PosNode()

NAME
Att_PosNode - reposition an Att_Node in an Att_List

SYNOPSIS
Att_PosNode (list, node, before)
AQ Al A2

void Att_PosNode (Att_List *, Att_Node =%, Att_Node «*);

FUNCTION
This routine removes an Att_Node from its current position and
re-inserts it in the list in a new position.

INPUTS
list - Att_List containing node
node - Att_Node to reposition
before — Att_Node to re-insert the node before

DOpusSDK 141/190

RESULT
The node is inserted in the list before the supplied node.

SEE ALSO

Att_NewNode ()

1.177 Att_RemList()

NAME
Att_RemList - free an entire Att_List

SYNOPSIS
Att_RemList (list, flags)
AQ DO

void Att_RemList (Att_List x, long);

FUNCTION

This function releases all the memory used by an Att_List, including
freeing all of the Att_Nodes attached to it.

INPUTS
list - Att_List to free
flags — control flags. Current flag values are

REMLISTF_FREEDATA - If you specify this flag, the data
pointers of each of the nodes will
be automatically freed with FreeVec().
Therefore, if you use this feature,
the data you supply to
Att_NewNode ()

MUST have been allocated with
AllocVec () .

REMLISTF_SAVELIST - If you specify this flag, only the
nodes of the list will be freed. The
Att_List itself will be reinitialised,
ready for use.

RESULT
The list nodes and optionally the list itself is freed.

SEE ALSO

Att_NewList ()

14

Att_NewNode ()

4

Att_RemNode ()

DOpusSDK 142 /190

1.178 Att_RemNode()

NAME
Att_RemNode - remove a node from a list
SYNOPSIS
Att_RemNode (node)
AQ

void Att_RemNode (Att_Node =«*);

FUNCTION
This function removes the specified node from its list, and frees
the name copy and node structure.

INPUTS
node - node to free

RESULT
The node is removed and freed. The node data is NOT freed by this
routine.

SEE ALSO
Att_NewNode ()

4

Att_RemList ()

1.179 FindNamel()

NAME
FindNameI - find a node by name
SYNOPSIS
FindNameI (list, name)
AQ Al

struct Node #*FindNamel (struct List %, char x);

FUNCTION
This routine is similar to the exec.library/FindName routine, except
that the comparison used in FindNameI () is not case-sensitive.
INPUTS
list - list to search
name - name to search for
RESULT

Returns pointer to the node if found, otherwise NULL.

SEE ALSO
exec.library/FindName ()

DOpusSDK 143 /190

1.180 GetSemaphore()

NAME
GetSemaphore - lock a semaphore

SYNOPSIS
GetSemaphore (semaphore, flags, unused)
AQ DO Al

long GetSemaphore (struct SignalSemaphore %, long, APTR);

FUNCTION
This routine locks or attempts to lock the given Semaphore. This
routine fixes some bugs that the exec.library Semaphore routines
have under some versions of the O0S.

INPUTS
semaphore - Semaphore to lock
flags - control flags. Valid flags are

SEMF_SHARED — lock in shared mode
SEMF_EXCLUSIVE - lock in exclusive mode
SEMF_ATTEMPT — only attempt to lock

unused - must be NULL

RESULT
Returns TRUE if the Semaphore was successfully locked. If SEMF_ATTEMPT
is not specified, this routine will block until the Semaphore is
available, and will always return TRUE.

NOTES
To unlock a Semaphore locked with this function, use the standard
exec.library ReleaseSemaphore () call.

SEE ALSO

exec.library/ObtainSemaphore (), exec.library/ObtainSemaphoreShared(),
exec.library/AttemptSemaphore (), exec.library/AttemptSemaphoreShared(),
exec.library/ReleaseSemaphore ()

1.181 InitListLock()

NAME
InitListLock - initialise a list/lock pair
SYNOPSIS
InitListLock (11, unused)
AQ Al

void InitListLock (struct ListLock %, APTR);

FUNCTION

DOpusSDK

144 /190

A ListLock 1is a convenient structure that ties a List to a Semaphore.
This routine initialises both with the one call.

INPUTS
11 - ListLock to initialised
unused - must be NULL

RESULT
The List and the Semaphore in the ListLock are initialised.

SEE ALSO
exec.library/NewList (), exec.library/InitSemaphore ()

1.182 IsListLockEmpty()

NAME
IsListLockEmpty - see if a list is empty

SYNOPSIS
IsListLockEmpty (11)
A0
BOOL IsListLockEmpty (struct ListLock «);
FUNCTION
This routine is equivalent to the IsListEmpty () macro, except that

it locks the list in shared mode before accessing it.

INPUTS
11 - ListLock to test

RESULT
Returns TRUE if the list is empty.

SEE ALSO

InitListLock ()
, exec.library/IsListEmpty ()

1.183 LockAttList()

NAME
LockAttList - lock an Att_List

SYNOPSIS
LockAttList (1list, exclusive)
AQ DO

void LockAttList (Att_List %, BOOL);

FUNCTION

DOpusSDK 145 /190

If an Att_List was created with the LISTF_LOCK flag, this routine can
be used to lock the list.

INPUTS

list - Att_List to lock

exclusive - set to TRUE if you want exclusive access
RESULT

This routine will block until the list can be locked, and then return.
You must call
UnlockAttList ()
to unlock the list when you have
finished with it.

SEE ALSO
Att_NewList ()

4

UnlockAttList ()

1.184 SwapListNodes()

NAME

SwapListNodes - swap two nodes in a list around
SYNOPSIS

SwapListNodes (list, nodel, node2);

AQ Al A2
void SwapListNodes (struct List %, struct Node *, struct Node x);

FUNCTION
This routine exchanges the positions of two nodes in a list.

INPUTS
list - List containing the nodes
nodel - first node to swap
node2 - second node to swap

RESULT
The nodes’ positions will be exchanged.

1.185 UnlockAttList()

NAME
UnlockAttList - unlock an Att_List

SYNOPSIS
UnlockAttList (1list)
AQ

DOpusSDK 146 /190

void UnlockAttList (Att_List «);

FUNCTION
This routine unlocks an Att_List that was locked with
LockAttList ()
INPUTS

list - list to unlock
RESULT
The list is unlocked. Calls to
LockAttList ()
are nested, so you must
unlock the list as many times as you locked it.

SEE ALSO

LockAttList ()

1.186 Locale Routines

Locale Routines

DOpusGetString ()

1.187 DOpusGetString()

NAME
DOpusGetString - get a text string from the locale table

SYNOPSIS
DOpusGetString (locale, 1id)
AQ DO

STRPTR DOpusGetString(struct DOpusLocale x, long);

FUNCTION
This routine searches the string table referenced by the supplied
DOpusLocale structure for the string matching the supplied ID,
and returns a pointer to it.

The DOpusLocale structure must be initialised in the following way
1i_LocaleBase - locale.library base address, or NULL

1i_Catalog - OpenCatalog () result, or NULL
1i_BuiltIn - default string table

DOpusSDK 147 /190

1li_Locale — current system locale or NULL

If there is no external catalog file, or locale.library is not
available, all fields except 1i_BuiltIn must be initialised to
NULL. 1i_BuiltIn MUST point to a table of default strings. This
table is in the CatComp block format. The easiest way to initialise
this pointer is to have a separate source module to a) include

the string table, and b) initialise the pointer. For example,

#define CATCOMP_BLOCK
#include "strings.h"

void init_locale_ptr (struct DOpusLocale xlocale)
{
locale—>1i_BuiltIn=(char =)CatCompBlock;
}
INPUTS
locale - pointer to initialised DOpusLocale structure.
id - string ID to return.
RESULT
Returns a pointer to the requested string. If there is no catalog,
or the given string is not in the supplied catalog, the default
string is returned. This pointer is READ-ONLY!
You MUST NOT pass invalid string IDs to this routine.
SEE ALSO

locale.library/OpenLocale (), locale.library/OpenCatalog(),
locale.library/GetLocaleStr ()

1.188 Memory_Routines

Memory Routines

AllocMemH ()
ClearMemHandle ()
FreeMemH ()
FreeMemHandle ()

NewMemHandle ()

1.189 AllocMemH()

NAME
AllocMemH - allocate memory using pooling routines

DOpusSDK

148 /190

SYNOPSIS
AllocMemH (handle, size)
A0 DO

void xAllocMemH (APTR, ULONG) ;

FUNCTION
This function allows you to allocate a chunk of memory. The type of
memory allocated was specified when the memory handle was created.
The size of the allocation is tracked automatically (similar to
AllocVec) .

You can actually use this function with a NULL memory handle - in this
case, the function performs much like AllocVec (). This disadvantage
to this is that you are unable to specify the type of memory you need
(the default is MEMF_ANY |MEMF_CLEAR) . Memory allocated in this way can
obviously not be tracked, and you must

FreeMemH ()

each allocation

individually.

INPUTS
handle - memory handle (from
NewMemHandle ()
)

size - the amount of memory to allocate

RESULT
Returns a pointer to the memory block for you to use, or NULL if
the request could not be satisfied.

SEE ALSO
NewMemHandle ()

14

FreeMemH ()

1.190 ClearMemHandle()

NAME
ClearMemHandle - free all memory allocated via a handle
SYNOPSIS
ClearMemHandle (handle)
AO

void ClearMemHandle (APTR) ;

FUNCTION
This function frees all memory that has been allocated with

AllocMemH ()
via the specified handle. The memory handle itself

DOpusSDK 149/190

remains intact.

INPUTS
handle - memory handle (from

NewMemHandle ()
)

SEE ALSO
NewMemHandle ()
’
AllocMemH ()
r
FreeMemHandle ()

1.191 FreeMemH()

NAME
FreeMemH - free memory allocated with
AllocMemH ()
SYNOPSIS
FreeMemH (memory)
AQ

void FreeMemH (APTR) ;

FUNCTION

This function frees an individual memory chunk that was allocated
using
AllocMemH ()

INPUTS
memory — memory address returned from
AllocMemH ()
SEE ALSO

NewMemHandle ()

4

AllocMemH ()

1.192 FreeMemHandle()

NAME
FreeMemHandle - free a memory handle completely

SYNOPSIS
FreeMemHandle (handle)
A0

DOpusSDK 150/ 190

void FreeMemHandle (APTR) ;

FUNCTION
This function frees all memory that was allocated using the specified
handle, and then frees the handle itself.

INPUTS
handle - memory handle from
NewMemHandle ()
SEE ALSO
NewMemHandle ()
r
ClearMemHandle ()

1.193 NewMemHandle()

NAME
NewMemHandle - allocate a new memory handle
SYNOPSIS
NewMemHandle (puddle_size, thresh_size, type)
DO D1 D2

APTR NewMemHandle (ULONG, ULONG, ULONG) ;

FUNCTION
This function allocates a new memory handle, to enable easy access to
memory pooling and tracking functions.

If you wish to use the 0S memory pooling routines, specify a puddle
and a threshhold size for the memory pool. If you do not specify
these, the memory handle will use ordinary memory allocations and
keep track of these via a linked list. A linked list will also be
used i1f the creation of a memory pool fails for any reason.

You must specify the type of memory you want when you create the
handle. All memory allocated with this handle will be of the requested
type (ie you can not mix fast and chip memory within the same handle).
The normal MEMF_ flags are used for this, with the following notes:

- If MEMF_CLEAR is specified, the
AllocMemH ()
routine clears the
memory itself (as the 0OS pooling routines do not support this).

- If MEMF_PUBLIC is specified, it indicates that you want the memory
handle to be shareable between tasks, and the allocation routines

will use semaphore locking when accessing the handle.

The dopus5.library is linked with the standalone memory pool routines,
and therefore these routines work under 0S37 as well as 0S39.

INPUTS

DOpusSDK

151/190

puddle_size - size of puddles to use for pooling, or 0 for no pools
thresh_size - allocation threshhold size for pooling
type - type of memory to allocate

RESULT
Returns a memory handle for use with the other memory functions, or
NULL for failure.

SEE ALSO

AllocMemH ()

4

ClearMemHandle ()

4

FreeMemH ()

4

FreeMemHandle ()

7
exec.library/AllocPooled (), exec.library/FreePooled(),
exec.library/CreatePool (), exec.library/DeletePool ()

1.194 Misc_Routines

Miscellaneous Routines

Atoh ()

BtoCStr ()
BuildKeyString()
BytesToString ()
ConvertRawKey ()
DivideToString ()
DivideU ()

Itoal()

ItoalU()
QualValid ()
Random ()
StrCombine ()
StrConcat ()

Seed ()

DOpusSDK 152/ 190

1.195 Atoh()

NAME
Atoh - convert a hex ascii string to a long
SYNOPSIS
Atoh (string, len)
\0) DO

long Atoh (char x, long);

FUNCTION
Converts an ascii representation of a hex value to a long value.

INPUTS
string - string to convert
len - length of string to convert, or -1 for the whole string

RESULT
Returns the long value equivalent to the ascii string.

1.196 BtoCStr()

NAME
BtoCStr - convert a BCPL string to a C string

SYNOPSIS
BtoCStr (bstr, cstr, length)
A0 Al DO

void BtoCStr (BSTR, char %, long);

FUNCTION
Converts the supplied BSTR to a null-terminated C string.

INPUTS
bstr - BCPL pointer to BSTR to convert
cstr - buffer to store converted string in

length - size of buffer

RESULT
The string is converted. BSTRs are limited to 255 characters.

1.197 BuildKeyString()

DOpusSDK 153 /190

NAME
BuildKeyString - build a commodities key code string

SYNOPSIS
BuildKeyString(code, qual, qual_mask, qual_same, buffer)
DO D1 D2 D3 A0

void BuildKeyString (USHORT, USHORT, USHORT, USHORT, char x);

FUNCTION
Takes the supplied key code and qualifier and converts them to an
ASCII string that is compatible with Commodities.

INPUTS
code — key code
qual - key qualifier
qual_mask - mask of the qualifiers to care about
qual_same - which qualifiers are equivalent

RESULT
The string is stored in the supplied buffer. String lenghts can
vary but for safety this buffer should be at least 80 bytes.

SEE ALSO
commodities.library/ParseIX()

1.198 BytesToString()

NAME
BytesToString - build a string representation of a byte size

SYNOPSIS
BytesToString (bytes, buffer, places, separator)
DO AO D1 D2

void BytesToString (ULONG, char x, short, char);

FUNCTION
This routine takes a long value and creates a string to represent
that value as an expression of size. Some examples are

102 -> 102b
5804 -> 5K
1829382 -> 1.8M
INPUTS
bytes - byte value
buffer - buffer to store result
places - number of decimal places. This must be set to 1 currently.

separator - column separator (eg a comma could produce "1,193")

RESULT

DOpusSDK 154/ 190

The string is stored in the buffer. The buffer should be at least
16 bytes long.

1.199 ConvertRawKey()

NAME

ConvertRawKey - convert a key from the raw key code
SYNOPSIS

ConvertRawKey (code, qual, keybuf)

DO D1 A0
BOOL ConvertRawKey (USHORT, USHORT, char x);

FUNCTION
Takes the supplied code and qualifier and returns the equivalent
key in the current key map. This function provides a convenient path
to the console.device’s RawKeyConvert () routine.

INPUTS
code — key code
qual - key qualifier
keybuf - buffer to store key

RESULT
The key is stored in the supplied buffer. Most keys only require
a single byte but in case one is larger the buffer should be at
least 8 bytes in size.

SEE ALSO
console.device/RawKeyConvert ()

1.200 DivideToString()

NAME
DivideToString - divide two numbers, store the result as ASCII

SYNOPSIS
DivideToString (buffer, numerator, denominator, places, separator)
A0 DO D1 D2 D3

void DivideToString(char %, ULONG, ULONG, short, char);

FUNCTION
This routine divides the numerator by the denominator, and stores
the result with one decimal place precision as an ASCII string.

INPUTS
string - buffer to store result
numerator - number to divide

DOpusSDK 155 /190

denominator - number to divide by
places - decimal places, must be set to 1 for now
separator - columns separator (eg a comma might produce "1,103")

RESULT
The division is performed and the result stored in the buffer.

1.201 DivideU()

NAME
DivideU - 32bit unsigned division with remainder

SYNOPSIS
DivideU (numerator, denominator, remainptr, utillib)
DO D1 A0 Al

ULONG DivideU (ULONG, ULONG, ULONG =x, struct Library x);

FUNCTION
This routine calls the utility.library UDivMod32 () routine, and
returns the result. Any remainder is stored in the supplied
variable.

INPUTS
numerator - number to divide
denominator - number to divide by
remainptr - pointer to ULONG to store the remainder
utillib - pointer to UtilityBase

RESULT
Returns the integer result. The remainder is stored in the supplied
variable.

SEE ALSO
utility.library/UDivMod32 ()

1.202 Itoa()

NAME
Itoa - converts signed integer to a string

SYNOPSIS
Itoa(num, string, separator)
DO A0 D1

void Itoa(long, char =%, char);
FUNCTION

This routine takes the supplied signed number and converts it to
an ASCII string.

DOpusSDK 156 / 190

INPUTS
num — number to convert
string - string to store result
separator - column separator character, or 0 for no separator.

RESULT
The string is stored in the supplied buffer.

SEE ALSO

Itoal()

1.203 Itoal()

NAME
ItoaU - converts unsigned integer to a string

SYNOPSIS
ItoaU(num, string, separator)
DO A0 D1

void ItoaU(long, char x, char);

FUNCTION
This routine takes the supplied unsigned number and converts it to
an ASCII string.

INPUTS
num — number to convert
string - string to store result

separator - column separator character, or 0 for no separator.

RESULT
The string is stored in the supplied buffer.

SEE ALSO

Itoal()

1.204 QualValid()

NAME
QualvValid - mask out invalid qualifiers

SYNOPSIS
QualvValid(qual)
DO

USHORT QualValid (USHORT) ;

DOpusSDK 157 /190

FUNCTION

Masks out invalid qualifiers from the supplied value and returns
the result.

INPUTS
qual - qualifier mask

RESULT
The return value is the new qualifier mask. Only the following
qualifiers are considered "valid" for operations within Opus

IEQUALIFIER_LCOMMAND, IEQUALIFIER_RCOMMAND,
IEQUALIFIER_LSHIFT, IEQUALIFIER RSHIFT,
IEQUALIFIER_LALT, IEQUALIFIER_RALT,
IEQUALIFIER_CONTROL, IEQUALIFIER_NUMERICPAD

1.205 Random()

NAME
Random - generate a psuedo-random number
SYNOPSIS
Random (1limit)
DO

long Random(long) ;

FUNCTION
Returns a psuedo-random number between 0 and ’"limit’ inclusive.

INPUTS
limit - upper limit of number

RESULT
Returns random number.

SEE ALSO

Seed ()

1.206 StrCombine()

NAME
StrCombine - combine two strings into one buffer
SYNOPSIS
StrCombine (buffer, first, second, size)
AQ Al A2 DO

BOOL StrCombine (char %, char %, char %, long);

DOpusSDK 158 /190

FUNCTION
Combines the two supplied strings into the one buffer.

INPUTS
buffer - buffer to store result
first - first string
second - second string
size - size of buffer

RESULT
Returns TRUE if both strings fitted in the buffer, or FALSE
if they had to be truncated.

SEE ALSO

StrConcat ()

1.207 StrConcat()

NAME
StrConcat - concatenate two strings
SYNOPSIS
StrConcat (first, second, size)
AQ Al DO

BOOL StrConcat (char x, char =, long);

FUNCTION
Joins the second string to the end of the first string.

INPUTS
first - first string
second - string to join
size - size of first buffer

RESULT
The second string is joined to the end of the first string.
This function returns TRUE if the second string fitted in the
buffer, or FALSE if it had to be truncated.

SEE ALSO

StrCombine ()

1.208 Seed()

NAME
Seed - seed the random number generator

DOpusSDK 159 /190

SYNOPSIS
Seed (seed)
DO
void Seed(long);

FUNCTION
Seeds the random number generator.

INPUTS
seed - value to seed generator with

SEE ALSO

Random ()

1.209 Notify_Routines

Notify Routines

AddNotifyRequest ()
RemoveNotifyRequest ()
ReplyFreeMsg ()

SetNotifyRequest ()

1.210 AddNotifyRequest()

NAME
AddNotifyRequest - add a request to Opus’s notify chain

SYNOPSIS
AddNotifyRequest (type, userdata, port)
DO D1 A0

APTR AddNotifyRequest (ULONG, ULONG, struct MsgPort =);

FUNCTION
Opus keeps track of several different system events, and this routine
allows you to request notification on them.

The events currently available for notification:
DN_WRITE_ICON — an icon 1s written to disk

DN_APP_TICON_LIST - an AppIcon is added or removed
DN_APP_MENU_LIST - an AppMenultem is added or removed

DOpusSDK 160 /190

DN_CLOSE_WORKBENCH CloseWorkbench () has been called
DN_OPEN_WORKBENCH - OpenWorkbench () has been called
DN_RESET_WORKBENCH - the workbench screen has been closed and
re—opened
DN_DISKCHANGE - a disk has been inserted or removed
DN_DOS_ACTION - a DOS event has occurred. In Opus 5.5,
these messages are only available if the
dopus/DOSPatch environment variable is set.
DN_REXX_UP - the ARexx process has been started.

Several Opus events are also available for notification:

DN_OPUS_START - Opus has started
DN_OPUS_QUIT - Opus has quit
DN_OPUS_HIDE — Opus has been hidden
DN_OPUS_SHOW — Opus has been revealed

When an event occurs that you have requested notification for, a
DOpusNotify message is sent to your message port. The message
structure is defined as follows:

dn_Msg — Exec message header

dn_Type - Event type

dn_UserData - the userdata you supplied to AddNotifyRequest ()

dn_Data — data specific to the type of event
dn_Flags - flags specific to the type of event
dn_Fib - a FileInfoBlock for some types of event
dn_Name - pathname specific to the type of event

The event-specific fields are used in the following way:

DN_WRITE_TICON

dn_Data - NULL

dn_Flags — if DNF_ICON_REMOVED is set, icon was deleted
dn_Fib — NULL

dn_Name - full pathname of icon

DN_APP_ICON_LIST
dn_Data - pointer to the ApplIcon added or removed
dn_Flags — if DNF_ICON_REMOVED 1is set, icon was removed
if DNF_ICON_CHANGED is set, the icon image
was changed
dn_Fib — NULL
dn_Name - NULL

DN_APP_MENU_LIST

dn_Data - pointer to the AppMenultem added or removed

DOpusSDK 161 /190

dn_Flags — if DNF_ICON_REMOVED 1is set, item was removed
dn_Fib — NULL
dn_Name - NULL

DN_DISKCHANGE
dn_Data - disk units the change occurred in (bits 0-3
represent units 0-3)
dn_Flags - which units have disks in them (bits 0-3
represent units 0-3)
dn_Fib - NULL
dn_Name - NULL

DN_DOS_ACTION

dn_Data - NULL

dn_Flags - which DOS action occurred (see <dopus/notify.h>)

dn_Fib — FileInfoBlock with file information. This is
supplied for all actions except Delete.

dn_Name - full pathname of file involved

INPUTS

type - type of events you want to be notified of. One request can

ask for multiple events. See <dopus/notify.h> for the full
list.

userdata - a user—-defined data field that is passed in any notify
messages.

port - message port to send notification messages to.

NOTES
Most notification messages are sent "reply free", meaning you must
use the
ReplyFreeMsqg ()
call to reply to them. Otherwise, the
message memory will be lost.

RESULT
Returns a notify handle which you use to remove the request.

SEE ALSO
RemoveNotifyRequest ()

4

SetNotifyRequest ()

1.211 RemoveNotifyRequest()

NAME
RemoveNotifyRequest - remove a notification request

SYNOPSIS
RemoveNotifyRequest (request)

DOpusSDK 162/ 190

AQ
void RemoveNotifyRequest (APTR) ;
FUNCTION

Removes a notify request that was added with
AddNotifyRequest ()

INPUTS
request - request to remove

RESULT
The request is removed. You will receive no more notifications for
that request. Once you have removed the request you should check
your message port for outstanding messages and reply to them.

SEE ALSO

AddNotifyRequest ()

1.212 ReplyFreeMsg()

NAME
ReplyFreeMsg - reply or free a message

SYNOPSIS
ReplyFreeMsqg (msg)
AQ

void ReplyFreeMsg (struct Message x);

FUNCTION
If the message has a valid ReplyPort, this function simply passes it
through to ReplyMsg (). If the message has no reply port set, this
function calls FreeVec() on the message to free it.

INPUTS
msg — message to reply or free

NOTES

Most Opus notification messages are sent "reply free", meaning you
MUST use this function to reply to them or the memory will be lost.

SEE ALSO

AddNotifyRequest ()

1.213 SetNotifyRequest()

DOpusSDK 163 /190

NAME
SetNotifyRequest - change notification events
SYNOPSIS
SetNotifyRequest (request, new_type, mask)
AQ DO D1

void SetNotifyRequest (APTR, ULONG, ULONG) ;

FUNCTION
This routine changes the type of events that an existing notification
request is interested in.

INPUTS
request - notification request to change
new_type - the new event flags to receive notification about
mask - mask of event flags to change (any events not specified in the

mask field will not be modified)
SEE ALSO

AddNotifyRequest ()

1.214 Popup_Routines

Popup Menu Routines

DoPopUpMenu ()

GetPopUpItem()

1.215 DoPopUpMenu()

NAME
DoPopUpMenu - display a popup menu

SYNOPSIS
DoPopUpMenu (window, menu, itemptr, button)
AD Al A2 DO

USHORT DoPopUpMenu (struct Window %, PopUpMenu %, PopUpItem =%, USHORT);
FUNCTION
This routine displays a popup menu. The PopUpMenu structure must be

initialised as follows:

item_list - a list of the menu items

DOpusSDK 164/ 190

locale — a pointer to an initialised DOpusLocale structure
flags - menu flags. Currently supported flags are:
POPUPMF_HELP — menu supports help via the user

pressing the help key

POPUPMF_REFRESH - the callback function supplied
should be used to refresh the
parent window

POPUPMF_ABOVE — the popup menu should open
above the parent window, instead
of over the current mouse
position

callback - pointer to your refresh callback function, or NULL

The callback function is a function that you define to handle the
situation when the parent window needs to be refreshed. If the parent
window is simplerefresh, you should provide this function. The function
has the following prototype:

void _ _asm refresh_callback (register __dO0 ULONG type,
register __a0 struct Window xwindow,
register __al ULONG userdata)

The routine will be called whenever the parent window needs to be
refreshed. 'type’ is the IDCMP message type; usually
IDCMP_REFRESHWINDOW. ’'window’ is a pointer to the parent window, and
"userdata’ is the userdata field of the PopUpMenu structure.

The ’'item_list’ parameter is a MinList containing the items of the
popup menu. Each node on this list is a PopUpltem structure, which is
defined as follows

item_name - pointer to item name

id - item ID

flags - item flags. Currently supported flags are:
POPUPF_LOCALE — signifies that ‘item_name’ is

not a pointer to a string, but
is a locale ID representing a
string in the supplied locale.

POPUPF_CHECKIT - item can be checked, much like
CHECKIT in Intuition menus

POPUPF_CHECKED - item starts out checked, much
like CHECKED in Intuition menus

POPUPF_SUB - item has sub-items

POPUPF_DISABLED - item is disabled

DOpusSDK 165/ 190

data - unless POPUPF_SUB is set, this is a userdata field
that can be set to anything. If POPUPF_SUB is set, this

field must point to an initialised MinList containing

the PopUpItem structures for the sub-menu. You can

have up to four levels of sub-menus.

Set ’'item_name’ to the special value POPUP_BARLABEL to produce a
separator bar in the menu.

INPUTS
window - Parent window to open menu over
menu — PopUpMenu to open
itemptr - Pointer to location to receive a pointer to the selected
item
button - The code of the mouse button pressed to generate this menu.

This is used to control which mouse button release will
remove the menu (eg, if you pass SELECTDOWN for the ’button’
value, the menu will be removed on a SELECTUP event)

RESULT
Returns -1 if no item was selected. If an item was selected,
the item ID is returned, and the address of the PopUpltem structure
is stored in ’itemptr’. If the user pressed the help key over an item
and the POPUPMF_HELP flag is set, the POPUP_HELPFLAG flag will be
set in the returned item ID.

SEE ALSO

GetPopUpItem/()

1.216 GetPopUpltem()

NAME
GetPopUpItem - find a PopUpltem by ID

SYNOPSIS
GetPopUpIltem (menu, id)
AQ DO

PopUpltem xGetPopUpltem (PopUpMenu =, USHORT);

FUNCTION
This searches the supplied menu for a PopUpltem with the specified ID,
and returns a pointer to it.

INPUTS
menu — PopUpMenu to search
id - ID to search for

RESULT
Returns a pointer to the PopUpItem if found, or else NULL. This routine
supports one level of sub-menus, and will not find an item that is
more than one sub-menu deep.

DOpusSDK 166 /190

NOTES
This routine is useful in allowing you to find an item to set the state
of the POPUPF_CHECKED and POPUPF_DISABLED flags.

SEE ALSO

DoPopUpMenu ()

1.217 Progress_Routines

Progress Indicator Routines

CheckProgressAbort ()
CloseProgressWindow ()
GetProgressWindow ()
HideProgressWindow ()
OpenProgressWindow ()
SetProgressWindow ()

ShowProgressWindow ()

1.218 CheckProgressAbort()

NAME
CheckProgressAbort - check for abort in progress window

SYNOPSIS

CheckProgressAbort (handle)
A0

BOOL CheckProgressAbort (APTR) ;
FUNCTION
Allows you to check the state of the abort flag in the specified

progress window.

INPUTS
handle - progress window handle

RESULT
Returns TRUE if the Abort button has been clicked.

SEE ALSO

DOpusSDK

167 /190

OpenProgressWindow ()

1.219 CloseProgressWindow()

NAME
CloseProgressWindow — close a progress window

SYNOPSIS
CloseProgressWindow (handle)
A0

volid CloseProgressWindow (APTR) ;

FUNCTION
Closes the specified progress window.

INPUTS
handle - progress window to close

SEE ALSO

OpenProgressWindow ()

1.220 GetProgressWindow()

NAME
GetProgressWindow - get progress window information

SYNOPSIS
GetProgressWindow (handle, tags)
A0 Al

void GetProgressWindow (APTR, struct Tagltem x);
void GetProgressWindowTags (APTR, Tag, ...);
FUNCTION

Returns information about the progress window. Currently available
information is

PW_Window - returns Window pointer
INPUTS
handle - progress window handle
tags - inquiry tags
RESULT

The result of each tag query is stored in the ti_Data field of the
TagItem.

DOpusSDK 168 /190

SEE ALSO

OpenProgressWindow ()

4

SetProgressWindow ()

1.221 HideProgressWindow()

NAME
HideProgressWindow — hide a progress window

SYNOPSIS
HideProgressWindow (handle)
A0

void HideProgressWindow (APTR) ;

FUNCTION
Removes the specified progress window from the display. The progress
window is still operative; it can still be updated and even closed

while it is hidden.

INPUTS
handle - progress window handle

SEE ALSO
OpenProgressWindow ()

4

ShowProgressWindow ()

1.222 OpenProgressWindow()

NAME
OpenProgressWindow — open a progress window display

SYNOPSIS

OpenProgressWindow (tags)
AD

APTR OpenProgressWindow (struct Tagltem x);
APTR OpenProgressWindowTags (Tag, ...);

FUNCTION
Opens a progress window that your application can use to display the
progression of some operation. The progress window can have a filename

display, file counter and progress guage.

INPUTS

DOpusSDK 169 /190

tags - control tags. Control tags are:

PW_Screen - screen to open on. The progress window will
appear centered in the screen. Use of this tag
overrides PW_Window.

PW_Window - window to open over. The progress window will
appear centered over the supplied window.

PW_Title - title for the progress window

PW_SigTask - task to signal when the abort gadget is pressed.
PW_SigBit - bit to signal task with (signal bit, not mask)
PW_FileName - initial filename for display

PW_FileSize - initial file size

PW_FileCount initial file count

PW_Flags - control flags

The control flags for the PW_Flags tag are

PWF_FILENAME - specify if you want a filename display
PWEF_FILESIZE - specify if you want a file size display (1)
PWEF_INFO - specify if you want an information line
PWF_GRAPH - specify if you want a bar graph display (1)
PWF_NOABORT - specify if you don’t want an Abort button (2)

PWF_INVISIBLE - if you want the progress window to open in ’"hidden’
mode (ie you need to call
ShowProgressWindow ()
to
make it visible)
PWF_ABORT - specify if you do want an Abort button (2)

1. Ordinarily, the file size is displayed as a "xxxxxx bytes" string in
the top-right of the progress window, and the bar graph is used to
represent "x out of y files". If, however, you specify both
PWF_FILESIZE and PWF_GRAPH, the meanings of these displays is
automatically swapped around. The current file progress (eg bytes
copied) 1is displayed in the bar graph, and the current operation
progress (eg files copied) is displayed in text in the top-right
corner.

2. If you specify a signal task with the pw_SigTask flag, the
progress window will automatically get an Abort button. You can use
the PWF_NOABORT flag to stop this happening.

If you do not specify the pw_SigTask flag, you can use the PWF_ABORT
flag to add an Abort button without signalling (you will need to
call

CheckProgressAbort ()

to detect an abort).

RESULT

DOpusSDK 170 /190

Returns a handle to the newly created progress window, or NULL for
failure.

SEE ALSO
SetProgressWindow ()

4
CloseProgressWindow ()

1.223 SetProgressWindow()

NAME
SetProgressWindow - update progress window information
SYNOPSIS
SetProgressWindow (handle, tags)
AQ Al

void SetProgressWindow (APTR, struct Tagltem x);
void SetProgressWindowTags (APTR, Tag, ...);
FUNCTION

This is the routine you use to update the information displayed in
a progress window.

INPUTS
handle - progress window handle
tags - control tags. Valid tags are
PW_Title — change the window title
PW_F1ileName — change the displayed filename
PW_FileSize — change the total size of the current file
PW_FileDone — change the "done" size of the current file

(eg, if the file size was 12800 and you had
copied half of it, the done size would be
6400) .

PW_Info - change the information field display
PW_FileCount — change the total number of files

PW_FileNum - change the number of files processed (eg,
if the total file count was 84 and you had
processed a quarter of them, the current
file number would be 21).

RESULT
The changes are displayed immediately. If the progress window is
currently hidden, the changes are still effective and will be
visible when the progress window is revealed.

DOpusSDK 171/190

SEE ALSO

OpenProgressWindow ()

1.224 ShowProgressWindow()

NAME
ShowProgressWindow — reveal a hidden progress window

SYNOPSIS
ShowProgressWindow (handle, screen, window)
AQ Al A2

void ShowProgressWindow (APTR, struct Screen %, struct Window x*);

FUNCTION
Reveals a progress window that was hidden with
HideProgressWindow ()

INPUTS
handle - progress window handle
screen - new parent screen (if no window supplied)
window — new owner window (if no screen supplied)
RESULT

The progress window is revealed. If possible, it will be displayed
at the same position on the screen as it was when it was hidden.

SEE ALSO
OpenProgressWindow ()

4

HideProgressWindow ()

1.225 Requester_Routines

Requester Routines

AsyncRequest ()
OpenStatusWindow ()
SelectionList ()

SetStatusText ()

DOpusSDK 172/190

1.226 AsyncRequest()

NAME
AsyncRequest - display a requester
SYNOPSIS
AsyncRequest (ipc, type, window, callback, data, tags)
AQ DO Al A2 A3 D1

long AsyncRequest (IPCData *, long, struct Window x,
REF_CALLBACK, APTR, struct Tagltem x);

long AsyncRequestTags (IPCData x, long, struct Window =,
REF_CALLBACK, APTR, Tag, ...);

FUNCTION
Displays requesters of different types. The name of this function
is slightly misleading, as the routine itself is not asynchronous.
However, the requester is launched by a separate process, which makes
it possible for you to provide a callback function that can handle
refreshing of a window while the requester is displayed. There are
currently two types of requesters defined:

REQTYPE_FILE

This opens an ASL file requester. The FileRequester itself is defined
by you; this routine simples opens it with a separate process,
providing asynchronicity. The only value tag for this requester type
is AR_Requester, with which you specify the address of a file
requester structure obtained via AllocAslRequest () .

REQTYPE_SIMPLE
This displays a simple text requester to the user. There are several
control tags for this requester type which give you great control
over the appearance of the requester
AR_Window (struct Window =)
Use this to specify a parent window for the requester. The
requester will appear centered over this window (overrides
AR_Screen)

AR_Screen (struct Screen x)

Use this to specify a parent screen for the requester. The
requester will appear centered in the screen.

AR_Title (char =)
The requester title. This is displayed in the title bar of the

requester window. If not specified, this value defaults to
"Directory Opus Request".

DOpusSDK 173/190

The

AR _Message (char x)

The requester message. This is the text displayed in the main
body of the requester. Use a \n character to represent a linefeed.

AR_Button (char x)

This tag allows you to define a button for the requester. You
can use this tag multiple times.

AR_ButtonCode (long)

Specifies the ID code for the previous AR_Button tag. By default,

buttons are numbered 1, 2, 3, ... in the order they appear in the
tag list. This tag allows you to change the ID codes, and
therefore the result code from the AsyncRequest () function.

AR_Buffer (char =)

If you want a string gadget to be displayed in the requester,
specify this tag with a pointer to a string buffer.

AR_BufLen (long)

If a buffer was specified with AR_Buffer, you must also supply
this tag to set the size of the buffer.

AR_History (Att_List x)
Points to an Att_List which contains the history list for this
gadget. If supplied, the user will be able to press the cursor

up and down keys to access the history. See the docs on

GetEditHook ()
for more information.

AR_CheckMark (char =x)

If you want a check mark gadget to appear in the requester,
specify this as a pointer to the text for the gadget.

AR_CheckPtr (short «)

If you specify the AR_CheckMark tag, you must also supply this
tag. ti_Data is a pointer to a short variable which will receive
the state of the checkmark gadget when the requester is closed.
AR_Flags (ULONG)

Control flags.

control flags for the AR_Flags tag are

SRF_LONGINT - the string gadget is an integer field
SRF_CENTJUST - center—-justify the string gadget
SRF_RIGHTJUST - right-justify the string gadget

SRF_PATH_FILTER filter path characters from string field

DOpusSDK 174 /190

SRF_SECURE — set for secure password field
SREF_HISTORY - set if supplying the AR_History tag
SRF_CHECKMARK - set if supplying the AR_CheckMark tag

SREF_MOUSE_POS

center requester over mouse pointer

The callback function is a function that you define to handle the
situation when the parent window needs to be refreshed. If the parent
window is simplerefresh, you should provide this function. The function
has the following prototype:

void _ _asm refresh_callback(register __dO0 ULONG type,
register __a0 struct Window xwindow,
register __al ULONG data)

The routine will be called whenever the parent window needs to be
refreshed. 'type’ is the IDCMP message type; usually
IDCMP_REFRESHWINDOW. ’'window’ is a pointer to the parent window, and

"data’ is the data value passed to the AsyncRequest () function.
INPUTS

ipc — your process’ IPCData pointer

type - type of requester to display

window - parent window for requester

callback - your callback function

data - data that is passed to the callback

tags - control tags
RESULT

Returns the result from the requester. Returns 0 if the requester
could not be displayed.

NOTES
For a REQTYPE_SIMPLE requester, the default gadget IDs are (from
left to right), 1, 2, 3 ... 0. The right-most gadget is defined as
0 to act as a "cancel" gadget. Therefore, in a simple "Ok", "Cancel"

requester, "Ok" returns 1 (or TRUE) and "Cancel" returns 0 (or FALSE).
SEE ALSO

asl.library/AllocAslRequest (),
GetEditHook ()

1.227 OpenStatusWindow()

NAME
OpenStatusWindow — open a status window

SYNOPSIS
OpenStatusWindow (title, text, screen, flags, unused)
AQ Al A2 DO D1

struct Window xOpenStatusWindow (char *, char %, struct Screen x,
ULONG, long);

DOpusSDK 175/190

FUNCTION
A status window is kind of like a "dumb" progress window; it has
the ability to display a single line of text.

INPUTS
title - status window title
text - initial text to display
screen — screen to open on
flags - set to O

unused - set to O

RESULT
Returns a pointer to the new window. To close the status window,
call
CloseConfigWindow ()
on it.

SEE ALSO
SetStatusText ()

4

CloseConfigWindow ()

1.228 SelectionList()

NAME
SelectionList - display a list in a requester
SYNOPSIS
SelectionList(1list, window, screen,

title, initialsel, flags,
buffer, okay_txt, cancel_txt)

short SelectionList (Att_List *, struct Window %, struct Screen =x,
char %, short, ULONG,
char %, char x, char x);

FUNCTION
This routine displays a requester containing a listview gadget,
prompting the user to select an item from the list. The requester
can optionally have a directory field, which allows the user to open
an ASL file requester to locate a directory that is not in the list.

INPUTS
list - Att_List to display (the name of each node is displayed)
window - parent window
screen — screen to open on if no window specified
title - title of requester
initialsel - initially selected item, or -1 for no selection
flags - control flags. Specify SLF_DIR_FIELD to get a directory
field
buffer - If SLF_DIR _FIELD is specified, this must point to a

buffer (256 bytes or greater) to contain the path name
chosen by the user

DOpusSDK 176 /190

okay_txt - text for the "Ok" gadget
cancel_txt - text for the "Cancel" gadget

RESULT
Returns the number of the selected item in the list, or -1 if the
user made no selection. If a directory field was specified with
SLF_DIR_FIELD, and -1 is returned, you should check the supplied
buffer to see if it is empty. If not, the user selected a path
manually.

SEE ALSO

Att_NewList ()

1.229 SetStatusText()

NAME
SetStatusText - change text in a status window
SYNOPSIS
SetStatusText (window, text)
A0 Al

void SetStatusText (struct Window =%, char =*);

FUNCTION
Changes the text displayed in the supplied status window.

INPUTS
window - status window
text - new text to display

RESULT
The text is displayed immediately. Do NOT call this function on a
window other than one returned by the

OpenStatusWindow ()
call.
SEE ALSO

OpenStatusWindow ()

1.230 Timer_Routines

Timer Routines

AllocTimer ()

CheckTimer ()

DOpusSDK 177 /190

FreeTimer ()
GetTimerBase ()
StartTimer ()
StopTimer ()

TimerActive ()

1.231 AllocTimer()

NAME
AllocTimer - allocate a timer handle
SYNOPSIS
AllocTimer (unit, port)
DO A0

TimerHandle xAllocTimer (ULONG, struct MsgPort x);

FUNCTION
This function allocates a timer handle to enable easy use of the
timer.device. You can supply a message port for it to use,
or have it create one for you. If you do not supply a message port,
the "port" field of the returned TimerHandle structure contains
the address of the port that was created for you.

INPUTS
unit - the timer.device unit you wish to use (eg UNIT_VBLANK)
port - message port to use (or NULL to have one created)

RESULT
Returns a TimerHandle to use with the other functions.

SEE ALSO

FreeTimer ()

4

StartTimer ()

1.232 CheckTimer()

NAME
CheckTimer - see if a timer request has completed

SYNOPSIS
CheckTimer (handle)
AQ

DOpusSDK 178/190

BOOL CheckTimer (TimerHandle *);

FUNCTION
This function allows you to discover if a timer request you have
started has completed.

INPUTS
handle - timer handle

RESULT
Returns TRUE if the request is complete, or FALSE if it has not
completed or is invalid.

SEE ALSO
StartTimer ()

4

StopTimer ()

1.233 FreeTimer()

NAME
FreeTimer - free a timer handle
SYNOPSIS
FreeTimer (handle)
AQ

void FreeTimer (TimerHandle =*);

FUNCTION
This function frees a timer handle created with
AllocTimer ()
Any

outstanding request is aborted automatically. If you supplied your
own message port to the
AllocTimer ()
function, you are responsible
for deleting the port yourself.

INPUTS
handle - timer handle

SEE ALSO

AllocTimer ()

1.234 GetTimerBase()

DOpusSDK 179/190

NAME
GetTimerBase - get a pointer to the timer.device library base

SYNOPSIS
GetTimerBase ()

struct Library =*GetTimerBase (void);

FUNCTION
This function returns a pointer to the library base of the
timer.device. The library base pointer is needed if you want to call
any of the library functions of the timer.device. This routine saves
you having to open the timer.device to get this base pointer.

INPUTS
none

RESULT

Returns struct Library * pointer. You must NOT call CloselLibrary () on
this pointer.

1.235 StartTimer()

NAME
StartTimer - send a timer request
SYNOPSIS
StartTimer (handle, seconds, micros)
AQ DO D1

void StartTimer (TimerHandle %, ULONG, ULONG) ;

FUNCTION
This function starts a timer request for a given period of time.
Your code should wait on "handle->port" for a signal indicating a
completed request. You can call
CheckTimer ()
at any time to see if
the request has been completed.

INPUTS
handle - timer handle
seconds - number of seconds for the request
micros — number of microseconds (0-999999)
NOTES

You can call this routine with a request already pending; the first
request will automatically be aborted.

SEE ALSO

AllocTimer ()

4

DOpusSDK 180 /190

StopTimer ()

4

CheckTimer ()

1.236 StopTimer()

NAME
StopTimer - stop a timer request in progress
SYNOPSIS
StopTimer (handle)
AQ

void StopTimer (TimerHandle x);

FUNCTION
This function aborts a timer request that was previously started
with
StartTimer ()
If the request has already completed, this
function simply does the cleanup.

INPUTS
handle - timer handle

SEE ALSO

AllocTimer ()

4

StartTimer ()

4

CheckTimer ()

1.237 TimerActive()

NAME
TimerActive - check if a timer request is pending
SYNOPSIS
TimerActive (handle)
\0)

BOOL TimerActive (TimerHandle «*);

FUNCTION
If you lose track of (or can’t be bothered keeping track of)
whether or not you have a pending timer request, this function
allows you to find out.

This function is actually not really necessary. All the timer

DOpusSDK 181 /190

functions are robust enough to cope with multiple requests

(a
StartTimer ()
with an already-pending request), or a
StopTimer ()
when a request is already complete (or was never sent), or any <+
of

the other "error" conditions that the timer.device is usually
sensitive to.

INPUTS
handle - timer handle

RESULT
Returns TRUE if there is a request pending.

SEE ALSO

AllocTimer ()

1.238 Index

Index to DOpusb55 Developer Guide & dopusb5.library

ActivateStrGad()
AddNotifyRequest ()
AddObjectList ()
AddScrollBars ()
AddSorted ()
AddWindowMenus ()
AllocAppMessage ()
AllocMemH ()
AllocTimer ()
AppWindowData ()
AppXXX_routines
Arg_Routines
AsyncRequest ()

Atoh ()

DOpusSDK

182/190

Att_ChangeNodeName ()
Att_FindNode ()
Att_FindNodeData ()
Att_FindNodeNumber ()
Att_NewList ()
Att_NewNode ()
Att_NodeCount ()
Att_NodeDataNumber ()
Att_NodeName ()
Att_NodeNumber ()
Att_PosNode ()
Att_RemList ()
Att_RemNode ()

B

BOOPSIFree ()
BOOPSI_gadgets
BoundsCheckGadget ()
BtoCstr ()
BufIO_Routines
BuildKeyString ()
BuildMenuStrip ()
BytesToString ()

c

ChangeAppIcon ()
CheckAppMessage ()
CheckObjectArea ()
CheckProgressAbort ()

CheckTimer ()

DOpusSDK

183/190

ClearMemHandle ()
ClearWindowBusy ()
Clipboard_Routines
CloseBuf ()
CloseClipBoard()
CloseConfigWindow ()
CloseDisk ()
CloseImage ()
CloseProgressWindow ()
Contact and Support
ConvertRawKey ()
CopyFileIcon ()
CopyImage ()
Copyrights

D

#defines (a-d)
#defines (e-f)
#defines (g-1)
#defines (j-o)
#defines (p-r)
#defines (s-w)
DateFromStrings ()
DeviceFromHandler ()
DeviceFromLock ()
DevNameFromLock ()
DisableObject ()
DiskIO_Routines
DisplayObject ()

DisposeArgs ()

DOpusSDK 184/ 190

DisposeBitMap ()
DivideToString ()
DivideU()
DoPopUpMenu ()
DOpus55 Developer Guide Index
dopusbuttongclass
dopuscheckgclass
dopusframeclass
DOpusGetString ()
dopusiclass
dopuslistviewgclass
dopuspalettegclass
dopusstrgclass
dopusviewgclass
DOS_Routines
Drag_Routines
DrawBox ()
DrawFieldBox ()

E

Edit_Hook
EndRefreshConfigWindow ()
ExamineBuf ()
Example files

F

FHFromBuf ()
FindAppWindow ()
FindBOOPSIGadget ()

FindMenulItem ()

DOpusSDK

185/190

FindNameT ()
FindPubScreen ()
FlushBuf ()
FreeAppMessage ()
FreeCachedDiskObject ()
FreeDosPathList ()
FreeDragInfo ()
FreeEditHook ()
FreeImageRemap ()
FreeMemH ()
FreeMemHandle ()
FreeObjectList ()
FreeRemapImage ()
FreeTimer ()

FreeWindowMenus ()
G

GetCachedDefDiskObject ()

GetCachedDiskObject ()

GetCachedDiskObjectNew ()

GetDosPathList ()

GetDragImage ()

GetDragInfo ()

GetDragMask ()

GetEditHook ()

GetFileVersion ()

GetGadgetValue ()

GetIconFlags ()

GetIconPosition ()

GetImageAttrs ()

DOpusSDK

186 /190

GetImagePalette ()
GetObject ()
GetObjectRect ()
GetPalette32 ()
GetPopUpItem/()
GetProgressWindow ()
GetSecureString ()
GetSemaphore ()
GetTimerBase ()
GetWBArgPath ()
GetWindowAppPort ()
GetWindowID ()
GetWindowMsg ()
Global table of contents
GUI_Routines

H

Headers etc
HideDragImage ()
HideProgressWindow ()
I

IFFChunkID ()
IFFChunkRemain ()
IFFChunkSize ()
IFFClose ()
IFFFailure ()
IFFGetForm ()
IFFNextChunk ()

IFFOpen ()

DOpusSDK

187 /190

IFFPopChunk ()
IFFPushChunk ()
IFFReadChunkBytes ()
IFFWriteChunk ()
IFFWriteChunkBytes ()
IFF_Routines
Image_Routines
InitListLock ()
IPC_Command ()
IPC_FindProc ()
IPC_Flush{()
IPC_Free()
IPC_Launch ()
IPC_ListCommand ()
IPC_ProcStartup ()
IPC_Reply ()
IPC_Routines
IsListLockEmpty ()
Itoal()

ItoalU()

L

LaunchCLI ()
LaunchWB ()
LayoutResize ()
Layout_Routines
List_Routines
LoadPalette32 ()
Locale_Routines

LockAttList ()

DOpusSDK

188 /190

Memory_Routines
Misc_Routines
Module_Definition
N

NewBitMap ()
NewMemHandle ()
Notify_ Routines

0

OpenBuf ()
OpenClipBoard()
OpenConfigWindow ()
OpenDisk ()

OpenImage ()

OpenProgressWindow ()

OpenStatusWindow ()
P

ParseArgs ()
ParseDateStrings ()
Popup_Routines
Progress_Routines

Q

Qualvalid()

R

Random ()
ReadBuf ()
ReadClipString()

RemapImage ()

DOpusSDK 189/190

RemoveNotifyRequest ()
RenderImage ()
ReplyAppMessage ()
ReplyFreeMsqg ()
ReplyWindowMsqg ()
Requester_Routines

S

ScreenInfo ()
SearchFile ()

Seed ()

SeekBuf ()
SelectionList ()
SetAppIconMenuState ()
SetBusyPointer ()
SetConfigWindowLimits ()
SetEnv ()
SetGadgetChoices ()
SetGadgetValue ()
SetIconFlags ()
SetIconPosition ()
SetNotifyRequest ()
SetProgressWindow ()
SetStatusText ()
SetWBArg ()
SetWindowBusy ()
SetWindowID ()
ShowDragImage ()
ShowProgressWindow ()

StampDragImage ()

DOpusSDK

190/190

StartRefreshConfigWindow ()

StartTimer ()
StopTimer ()
StrCombine ()
StrConcat ()
SwapListNodes ()
T
TimerActive ()
Timer_Routines
TypeDefs etc

U

UnlockAttList ()
W

WriteBuf ()

WriteClipString ()

	DOpusSDK
	Global table of contents
	Copyrights
	Contact and Support
	Example files
	Headers etc
	TypeDefs etc
	#defines (a-d)
	#defines (e-f)
	#defines (g-i)
	#defines (j-o)
	#defines (p-r)
	#defines (s-w)
	Module_Definition
	AppXXX_routines
	AllocAppMessage()
	AppWindowData()
	ChangeAppIcon()
	CheckAppMessage()
	FindAppWindow()
	FreeAppMessage()
	GetWBArgPath()
	ReplyAppMessage()
	SetAppIconMenuState()
	SetWBArg()
	Arg_Routines
	ParseArgs()
	DisposeArgs()
	BOOPSI_gadgets
	dopusbuttongclass
	dopuscheckgclass
	dopusframeclass
	dopusiclass
	dopuslistviewgclass
	dopuspalettegclass
	dopusstrgclass
	dopusviewgclass
	BufIO_Routines
	CloseBuf()
	ExamineBuf()
	FHFromBuf()
	FlushBuf()
	OpenBuf()
	ReadBuf()
	SeekBuf()
	WriteBuf()
	Clipboard_Routines
	CloseClipBoard()
	OpenClipBoard()
	ReadClipString()
	WriteClipString()
	DiskIO_Routines
	OpenDisk()
	CloseDisk()
	DOS_Routines
	DateFromStrings()
	DeviceFromHandler()
	DeviceFromLock()
	DevNameFromLock()
	FreeDosPathList()
	GetDosPathList()
	GetFileVersion()
	LaunchCLI()
	LaunchWB()
	ParseDateStrings()
	SearchFile()
	SetEnv()
	Drag_Routines
	FreeDragInfo()
	GetDragImage()
	GetDragInfo()
	GetDragMask()
	HideDragImage()
	ShowDragImage()
	StampDragImage()
	Edit_Hook
	FreeEditHook()
	GetEditHook()
	GetSecureString()
	GUI_Routines
	ActivateStrGad()
	AddScrollBars()
	BOOPSIFree()
	DisposeBitMap()
	DrawBox()
	DrawFieldBox()
	FindBOOPSIGadget()
	GetPalette32()
	LoadPalette32()
	NewBitMap()
	ScreenInfo()
	FindPubScreen()
	SetBusyPointer()
	FreeCachedDiskObject()
	GetCachedDefDiskObject()
	GetCachedDiskObject()
	GetCachedDiskObjectNew()
	GetIconFlags()
	GetIconPosition()
	SetIconFlags()
	SetIconPosition()
	CopyFileIcon()
	IFF_Routines
	IFFChunkID()
	IFFChunkRemain()
	IFFChunkSize()
	IFFClose()
	IFFFailure()
	IFFGetForm()
	IFFNextChunk()
	IFFOpen()
	IFFPopChunk()
	IFFPushChunk()
	IFFReadChunkBytes()
	IFFWriteChunkBytes()
	IFFWriteChunk()
	Image_Routines
	CloseImage()
	CopyImage()
	FreeImageRemap()
	FreeRemapImage()
	GetImageAttrs()
	GetImagePalette()
	OpenImage()
	RemapImage()
	RenderImage()
	IPC_Routines
	IPC_Command()
	IPC_FindProc()
	IPC_Flush()
	IPC_Free()
	IPC_Launch()
	IPC_ListCommand()
	IPC_ProcStartup()
	IPC_Reply()
	Layout_Routines
	AddObjectList()
	AddWindowMenus()
	BoundsCheckGadget()
	BuildMenuStrip()
	CheckObjectArea()
	ClearWindowBusy()
	CloseConfigWindow()
	DisableObject()
	DisplayObject()
	EndRefreshConfigWindow()
	FindMenuItem()
	FreeObjectList()
	FreeWindowMenus()
	GetGadgetValue()
	GetObject()
	GetObjectRect()
	GetWindowAppPort()
	GetWindowID()
	GetWindowMsg()
	LayoutResize()
	OpenConfigWindow()
	ReplyWindowMsg()
	SetConfigWindowLimits()
	SetGadgetChoices()
	SetGadgetValue()
	SetWindowBusy()
	SetWindowID()
	StartRefreshConfigWindow()
	List_Routines
	AddSorted()
	Att_ChangeNodeName()
	Att_FindNode()
	Att_FindNodeData()
	Att_FindNodeNumber()
	Att_NewList()
	Att_NewNode()
	Att_NodeCount()
	Att_NodeDataNumber()
	Att_NodeName()
	Att_NodeNumber()
	Att_PosNode()
	Att_RemList()
	Att_RemNode()
	FindNameI()
	GetSemaphore()
	InitListLock()
	IsListLockEmpty()
	LockAttList()
	SwapListNodes()
	UnlockAttList()
	Locale_Routines
	DOpusGetString()
	Memory_Routines
	AllocMemH()
	ClearMemHandle()
	FreeMemH()
	FreeMemHandle()
	NewMemHandle()
	Misc_Routines
	Atoh()
	BtoCStr()
	BuildKeyString()
	BytesToString()
	ConvertRawKey()
	DivideToString()
	DivideU()
	Itoa()
	ItoaU()
	QualValid()
	Random()
	StrCombine()
	StrConcat()
	Seed()
	Notify_Routines
	AddNotifyRequest()
	RemoveNotifyRequest()
	ReplyFreeMsg()
	SetNotifyRequest()
	Popup_Routines
	DoPopUpMenu()
	GetPopUpItem()
	Progress_Routines
	CheckProgressAbort()
	CloseProgressWindow()
	GetProgressWindow()
	HideProgressWindow()
	OpenProgressWindow()
	SetProgressWindow()
	ShowProgressWindow()
	Requester_Routines
	AsyncRequest()
	OpenStatusWindow()
	SelectionList()
	SetStatusText()
	Timer_Routines
	AllocTimer()
	CheckTimer()
	FreeTimer()
	GetTimerBase()
	StartTimer()
	StopTimer()
	TimerActive()
	Index

